# Algebra

Printable View

• Nov 21st 2008, 02:27 AM
dankelly07
Algebra
Ok any ideas on a quick way of cancelling expressions like this?

$\displaystyle \frac{{2\sqrt {5x - 1} - \frac{{5(2x + 7)}} {{2\sqrt {5x - 1} }}}} {{(5x - 1)}}$

I'm just getting a bit lost..
• Nov 21st 2008, 02:37 AM
Chop Suey
Multiply the expression by $\displaystyle \frac{\sqrt{5x-1}}{\sqrt{5x-1}}$. See where that gets you
• Nov 21st 2008, 02:56 AM
dankelly07
This right..?

$\displaystyle \frac{{\frac{{2\sqrt {5x - 1} }} {1} - \frac{{5(2x + 7)}} {{2\sqrt {5x - 1} }}}} {{(5x - 1)}}$

$\displaystyle \begin{gathered} \frac{{\frac{{2\sqrt {5x - 1} (2\sqrt {5x - 1} )}} {{2\sqrt {5x - 1} }} - \frac{{(1)5(2x + 7)}} {{2\sqrt {5x - 1} }}}} {{(5x - 1)}} \hfill \\ \hfill \\ \frac{{\frac{{5x - 20 - 7x + 7 - 10x - 7}} {{2\sqrt {5x - 1} }}}} {{5x - 1}} \hfill \\ \end{gathered}$

$\displaystyle \frac{{\frac{{ - 12x - 20}} {{2\sqrt {5x - 1} }}}} {{5x - 1}}$

Also at this stage I have read conflicting Ideas...

Is a/b/c = c * a / b
OR
a/b/c = a / b*c

How do you know which one to choose..??

.......(Thinking)
• Nov 25th 2008, 02:21 AM
dankelly07
Can anyone help?..(Worried)