Hi all!
Just wondering whether i could get some help solving this question for "t"? Do you have to put log10 on each side? Step by step if possible would be greatly appreciated.
20(10^0.1t) = 25(10^0.05t)
Cheers
$\displaystyle 20\left(10^{0.1t}\right) = 25\left(10^{0.05t}\right)$
$\displaystyle \frac{\left(10^{0.1t}\right)}{\left(10^{0.05t}\rig ht)} = \frac{25}{20}$
$\displaystyle 10^{0.1t - 0.05t} = \frac{5}{4}$
$\displaystyle 10^{0.05t} = \frac{5}{4}$
$\displaystyle 0.05t = \log_{10}{\frac{5}{4}}$
$\displaystyle t = 20\log_{10}{\frac{5}{4}}$