Results 1 to 3 of 3

Math Help - Logarithmic inequality

  1. #1
    Newbie
    Joined
    Oct 2008
    Posts
    11

    Logarithmic inequality

    log _{ \frac{1}{3} } x> log _{x}3-2,5

    Most important for me is the result as I made this exercise and my result is different as given in the book.
    Follow Math Help Forum on Facebook and Google+

  2. #2
    Super Member

    Joined
    May 2006
    From
    Lexington, MA (USA)
    Posts
    11,805
    Thanks
    696
    Hello, achacy!

    I have a somewhat intricate solution.
    . . Maybe someone can do better . . .


    \log _{\frac{1}{3}}x \;>\; \log _{x}3 - 2.5 .[1]

    I converted the terms to the same base.


    \text{Let: }\log_{\frac{1}{3}}(x) \:=\:P \quad\Rightarrow\quad \left(\frac{1}{3}\right)^P =\:x

    . . Take logs: . \ln\left(\frac{1}{3}\right)^P =\:\ln(x) \quad\Rightarrow\quad P\ln\left(\frac{1}{3}\right) \:=\:\ln(x)

    . . P\ln\left(3^{-1}\right) \:=\:\ln(x) \quad\Rightarrow\quad-P\ln(3) \:=\:\ln(x) \quad\Rightarrow\quad P \:=\:-\frac{\ln(x)}{\ln(3)}

    . . Hence: . \log_{\frac{1}{3}}(x) \;=\;-\frac{\ln(x)}{\ln(3)} .[2]

    From the Base-Change Formula: . \log_x(3) \:=\:\frac{\ln(3)}{\ln(x)} .[3]


    Substitute [2] and [3] into [1]: . -\frac{\ln(x)}{\ln(3)} \;> \;\frac{\ln(3)}{\ln(x)} - 2.5

    We have: . -\frac{\ln(x)}{\ln(3)} - \frac{\ln(3)}{\ln(x)} + 2.5 \;>\;0 \quad\Rightarrow\quad \frac{\ln(x)}{\ln(3)} + \frac{\ln(3)}{\ln(x)} - 2.5 \;<\;0


    Let u \:=\:\frac{\ln(x)}{\ln(3)} \quad\Rightarrow\quad u + \frac{1}{u} - 2.5 \;<\;0

    Muliply by u\!:\;\;u^2 + 1 - 2.5u \;<\;0 . . . assuming u > 0\;\;(x > 1)

    Multiply by 2: . 2u^2 - 5u + 2 \;<\;0\quad\Rightarrow\quad (u-2)(2u-1) \;<\;0


    There are two cases:

    . . \begin{array}{ccc}u-2\:>\:0 & \Rightarrow & u \:>\:2 \\ 2u-1 \:<\:0 & \Rightarrow & u \:<\:\frac{1}{2}\end{array}\quad\hdots \text{ impossible}

    . . \begin{array}{ccc}u-2 \:<\:0 & \Rightarrow & u \:<\:2 \\ 2u-1 \:>\:0 & \Rightarrow & u \:>\:\frac{1}{2}\end{array}\quad \hdots\;\tfrac{1}{2}\:<\:u\:<\:2


    Then we have: . \tfrac{1}{2}\;<\:\frac{\ln(x)}{\ln(3)} \;<\;2

    Multiply by \ln(3)\!:\;\;\tfrac{1}{2}\ln(3) \;<\;\ln(x) \;<\;2\ln(3) \quad\Rightarrow\quad \ln\left(3^{\frac{1}{2}}\right) \;<\;\ln(x) \;<\;\ln\left(3^2\right)

    Therefore: . \boxed{\sqrt{3}\;<\;x\;<\;9}

    Follow Math Help Forum on Facebook and Google+

  3. #3
    Newbie
    Joined
    Oct 2008
    Posts
    6
    put y = lnx/ln3 ===> -y > 1/y - 5/2


    2y^2 -5y + 2 < 0 ===> 1/2< y < 2 ===> rotsq( 3) < x < 9

    Follow Math Help Forum on Facebook and Google+

Similar Math Help Forum Discussions

  1. How to solve this logarithmic inequality
    Posted in the Algebra Forum
    Replies: 2
    Last Post: December 28th 2011, 07:00 AM
  2. Solving a logarithmic inequality.
    Posted in the Algebra Forum
    Replies: 3
    Last Post: September 30th 2011, 10:31 AM
  3. Logarithmic inequality
    Posted in the Algebra Forum
    Replies: 4
    Last Post: June 7th 2010, 10:59 AM
  4. Proving logarithmic inequality
    Posted in the Pre-Calculus Forum
    Replies: 3
    Last Post: April 12th 2010, 12:26 PM
  5. Logarithmic inequality?
    Posted in the Algebra Forum
    Replies: 1
    Last Post: April 29th 2009, 08:23 AM

Search Tags


/mathhelpforum @mathhelpforum