how do i solve a linear equation with fractions
$\displaystyle \frac{(x+2)}{3}=\frac{1}{5(3x+2)}$
Cross multipy
$\displaystyle 3 = 5(x+2)(3x+2)$
then distribute
$\displaystyle 3= (5x+10)(3x+2)$
$\displaystyle 3 = 15x^2 +10x + 30x + 20$
Combine like terms
$\displaystyle 3 = 15^2 + 40x +20$
Bring the 3 to other side
$\displaystyle 0 = 15x^2 + 40x +17$
Now use quad formula to solve