I would like to understand how to solve for r in this problem.
2773=1000(1+r)^36
I know that r=.0287 but I do not understand how to solve with the exponents. Do I use Ln? and how is that done? Thanks
yes you have to use ln, see here,
$\displaystyle
\frac{2773}{1000}=(1+r)^{36}$
$\displaystyle 2.773=(1+r)^{36}$
Now take natural log on both sides:
$\displaystyle
\ln{2.773}= \ln \left[(1+r)^{36}\right]$
$\displaystyle
1.019929767= 36 \ln (1+r)$
$\displaystyle
\frac{1.019929767}{36}= \ln (1+r)$
$\displaystyle 0.028331382= \ln (1+r)$
Now take antilog,
$\displaystyle e^{0.028331382}= 1+r$
$\displaystyle 1.028736533= 1+r$
$\displaystyle 1.028736533-1= r$
$\displaystyle r=0.028736533$
$\displaystyle r = 2.87 \% $