# Proof

• Sep 8th 2008, 06:09 PM
fifthrapiers
Proof
I can't find the topic I made.. ugh.

Any way I'm trying to prove $5^{2008}$ always ends in the digits $25$.

I almost had it.. something like:

$5(2x+5) = 10x + 25$ . . . this doesn't quite work. I have to tweek that somehow to show it.
• Sep 8th 2008, 08:29 PM
fifthrapiers
Anyone? I know the proof is similar to what I have. I just can't tweek it to get integers x = 1, 2, ... to satisfy that and include all the powers of 5 to show that you get something (something like 1000 + 100 + 25) and hence will always have 00 + 25 which completes the proof.
• Sep 9th 2008, 12:53 AM
Moo
Hello,

You can prove that $5^x$ always ends by 25 for $x \ge 2$

Do it by induction if you want to (Tongueout)
------------------------------------------------
It's ok for x=2

Assume $5^x$ ends up by 25, that is to say $5^x=100k+25$, where k is a (positive) integer.

$5^{x+1}=5 \cdot 5^x=5 \cdot (100k+25)=100 \cdot (5k)+5 \cdot (20+5)=100 \cdot (5k)+100+25$

$5^{x+1}=100 \cdot (5k+1)+25$, which obviously ends up by 25 :D