Case 1: $\displaystyle x > 0$: $\displaystyle 2 \geq 3x - x^2 \Rightarrow x^2 - 3x + 2 \geq 0$.
Case 2: $\displaystyle x < 0$: $\displaystyle 2 \leq 3x - x^2 \Rightarrow x^2 - 3x + 2 \leq 0$.
Case 1: $\displaystyle x^2 - 3x + 2 \geq 0 \Rightarrow$ $\displaystyle x \leq 1$ or $\displaystyle x \geq 2$ subject to the restriction $\displaystyle x > 0$. Therefore $\displaystyle x \geq 2$ or $\displaystyle 0 < x \leq 1$.