Results 1 to 2 of 2

Thread: Difference of Squares

  1. #1
    Newbie
    Joined
    Apr 2008
    Posts
    8

    Difference of Squares

    How do I show that $\displaystyle \frac{(x+\frac{1}{x})^6 - (x^6+\frac{1}{x^6}) -2}{(x+\frac{1}{x})^3+(x^3+\frac{1}{x^3})}$

    equals

    $\displaystyle (x+\frac{1}{x})^3-(x^3+\frac{1}{x^3})$

    and then how that equals

    $\displaystyle 3(x+\frac{1}{x})$

    Thanks!
    Follow Math Help Forum on Facebook and Google+

  2. #2
    Super Member

    Joined
    May 2006
    From
    Lexington, MA (USA)
    Posts
    12,028
    Thanks
    848
    Hello, RubyRed!

    How do I show that: .$\displaystyle \frac{\left(x+\dfrac{1}{x}\right)^6 - \left(x^6+\dfrac{1}{x^6}\right) -2}{\left(x+\dfrac{1}{x}\right)^3+\left(x^3+\dfrac{ 1}{x^3}\right)} \;\;=\;\;\left(x+\frac{1}{x}\right)^3-\left(x^3+\frac{1}{x^3}\right)$

    and then how that equals: .$\displaystyle 3\left(x+\frac{1}{x}\right)$

    The numerator is: .$\displaystyle \left(x + \frac{1}{x}\right)^6 - \left(x^6 + 2 + \frac{1}{x^6}\right) \;=\;\left(x + \frac{1}{x}\right)^6 - \left(x^3 + \frac{1}{x^3}\right)^2$

    . . . . $\displaystyle = \;\bigg[\left(x + \frac{1}{x}\right)^3\bigg]^2 - \left[x^3 + \frac{1}{x^3}\right]^2$ . . . a difference of squares

    which factors: .$\displaystyle \bigg[\left(x + \frac{1}{x^3}\right)^3 - \left(x^3 + \frac{1}{x^3}\right)\bigg]\cdot \bigg[\left(x + \frac{1}{x}\right)^3 + \left(x^3 + \frac{1}{x^3}\right)\bigg] $



    The fraction becomes: .$\displaystyle \frac{ \bigg[\left(x + \frac{1}{x^3}\right)^3 - \left(x^3 + \frac{1}{x^3}\right)\bigg]\cdot \bigg[\left(x + \frac{1}{x}\right)^3 + \left(x^3 + \frac{1}{x^3}\right)\bigg] }
    {\bigg[\left(x+\frac{1}{x}\right)^3 + \left(x^3 + \frac{1}{x^3}\right)\bigg]}$

    . . which reduces to: .$\displaystyle \boxed{\left(x+\frac{1}{x}\right)^3 - \left(x^3 + \frac{1}{x^3}\right)} $




    Expand the cube: .$\displaystyle \left(x^3 + 3x + \frac{3}{x} + \frac{1}{x^3}\right) - \left(x^3 + \frac{1}{x^3}\right)$

    . . . $\displaystyle =\;\;x^3 + 3x + \frac{3}{x} + \frac{1}{x^3} - x^3 - \frac{1}{x^3} \;\;=\;\;3x + \frac{3}{x} \;\;=\;\;\boxed{3\left(x + \frac{1}{x}\right)} $

    Follow Math Help Forum on Facebook and Google+

Similar Math Help Forum Discussions

  1. Difference of Squares
    Posted in the Algebra Forum
    Replies: 1
    Last Post: Mar 31st 2011, 04:49 PM
  2. Difference of squares
    Posted in the Number Theory Forum
    Replies: 1
    Last Post: Mar 31st 2010, 10:41 AM
  3. Ti-83 difference of squares
    Posted in the Calculators Forum
    Replies: 4
    Last Post: Aug 4th 2009, 09:52 PM
  4. Difference of Squares
    Posted in the Algebra Forum
    Replies: 9
    Last Post: Aug 25th 2008, 09:28 AM
  5. The difference of two squares
    Posted in the Math Topics Forum
    Replies: 2
    Last Post: Aug 8th 2008, 11:59 AM

Search Tags


/mathhelpforum @mathhelpforum