Let a, b, c>0. show that $\displaystyle \frac {a^2 + bc}{b + c} + \frac {b^2 + ca}{c + a} + \frac {c^2 + ab}{a + b}\ge \frac {a(b^2 + c^2)}{a^2 + bc} + \frac {b(c^2 + a^2)}{b^2 + ca} + \frac {c(a^2 + b^2)}{c^2 + ab}$
thanx
Let a, b, c>0. show that $\displaystyle \frac {a^2 + bc}{b + c} + \frac {b^2 + ca}{c + a} + \frac {c^2 + ab}{a + b}\ge \frac {a(b^2 + c^2)}{a^2 + bc} + \frac {b(c^2 + a^2)}{b^2 + ca} + \frac {c(a^2 + b^2)}{c^2 + ab}$
thanx