$\displaystyle m*z^2 - D*z +k = 0
$
Need to find the values of z in terms of real and imaginary. m, D and k are all constants. Help would be much aprecciated!
Hello,
Just find the discriminant !
$\displaystyle \Delta=D^2-4km$
The solutions are thus $\displaystyle z=\frac{D \pm \sqrt{D^2-4km}}{2m}$
If $\displaystyle D^2-4km <0$, we can write $\displaystyle D^2-4km=(-1)*\underbrace{(4km-D^2)}_{>0}=i^2 \cdot (4km-D^2)$
$\displaystyle \implies z=\frac{D \pm i ~\sqrt{4km-D^2}}{2m}=\frac{D}{2m} \pm i ~\frac{\sqrt{4km-D^2}}{2m}$
What are the real and imaginary parts ?