Write 1/2 log a (x + 2) - 3 log a (x - 1) + 2 log a X as a single logarithm.
$\displaystyle \frac{1}{2} \log_a(x+2) - 3 \log_a(x-1) + 2 \log_a(x)$
$\displaystyle =\log_a(x+2)^\frac{1}{2} - \log_a(x-1)^3 + \log_a(x)^2$
$\displaystyle =\log_a \left [ \frac{(x+2)^\frac{1}{2}}{(x-1)^3} \right ] + \log_a(x)^2$
$\displaystyle =\log_a \left [ \frac{x^2(x+2)^\frac{1}{2}}{(x-1)^3} \right ]$