I am not sure if i entered this correctly
$\displaystyle
\frac {{ab+b^2}{4ab^5}}{{a+b}{6a^2b^4}}
$
maybe you're trying to say:Originally Posted by Chester
$\displaystyle
\frac{\frac{ab+b^2}{4ab^5}}{\frac{a+b}{6a^2b^4}}
$
but that seems silly, with the bracket you left out your expression is:
$\displaystyle
\frac {{ab+b^2}{4ab^5}}{{a+b}{6a^2b^4}}
$
but I don't understand...
Originally Posted by Chesterswitch the division sign to multiplication: $\displaystyle \frac{ab+b^2}{4ab^5} \times \frac{6a^2b^4}{a+b}$$\displaystyle
\frac{ab+b^2}{4ab^5} \div \frac{a+b}{6a^2b^4}
$
multiply: $\displaystyle \frac{(ab+b^2)(6a^2b^4)}{(4ab^5)(a+b)}$
seperate: $\displaystyle \frac{ab+b^2}{a+b} \times \frac{6a^2b^4}{4ab^5}$
divide: $\displaystyle \frac{ab+b^2}{a+b} \times \frac{6a}{4b}$
multiply: $\displaystyle \frac{6a(ab+b^2)}{4b(a+b)}$
multiply: $\displaystyle \frac{6a^2b+6b^2a}{4ab+4b^2}$
split: $\displaystyle \frac{6a^2b}{4ab+4b^2}+\frac{6b^2a}{4ab+4b^2}$
simplify: $\displaystyle \frac{6a^2b}{4b(b+a)}+\frac{6b^2a}{4b(b+a)}$
simplify: $\displaystyle \frac{3a^2}{2(b+a)}+\frac{3ab}{2(b+a)}$
add: $\displaystyle \frac{3a^2+3ab}{2(b+a)}$
combine: $\displaystyle \frac{3a(a+b)}{2(b+a)}$
seperate: $\displaystyle \frac{3a}{2}\times\frac{a+b}{b+a}$
simplify: $\displaystyle \frac{3a}{2}\times1$
simplify: $\displaystyle \frac{3a}{2}$
I might have done more work than necessary, but I got the job done...
No, it isn't required, but the standard method to simplify a complex fraction is to multiply the numerator and denominator by the LCD of the denominators of the "lesser" fractions. (I'm not sure what the standard terminology is here.) You can, of course, use other methods.Originally Posted by Quick
-Dan