How do I solve the following without using my calculator:
a) e^In 1000
b) log10(100e)
c) In e
d) log10 (e^8)
hints:
for $\displaystyle a>0, b>0, d>0$ and any $\displaystyle c \in \mathbb{R}$
$\displaystyle e^{\ln a}=a$
$\displaystyle \log_a a = 1$
$\displaystyle log_a b^c = c \log_a b$
$\displaystyle \log_a (bd) = \log_a b + \log_a d$
$\displaystyle \log_a \left(\frac{b}{d}\right) = \log_a b - \log_a d$