Rewrite (1/27)^x as a base of three.....
HELP!
$\displaystyle 27 = 3^3$ so...Originally Posted by Luckyjoshua
$\displaystyle \left ( \frac{1}{27} \right ) ^x = \left ( \frac{1}{3^3} \right ) ^x$
$\displaystyle = \left ( \left [ \frac{1}{3} \right ] ^3 \right )^x$
$\displaystyle = \left ( \frac{1}{3} \right ) ^{3 \cdot x} = \left ( \frac{1}{3} \right ) ^{3x}$
Again, $\displaystyle \frac{1}{3} = 3^{-1}$ which results (via the same kind of method) to
$\displaystyle \left ( \frac{1}{27} \right ) ^x = 3^{-3x}$
-Dan