Results 1 to 3 of 3

Math Help - Roots

  1. #1
    Newbie
    Joined
    Feb 2007
    Posts
    9

    Roots

    Hi,

    If  x_{1}, x_{2} are the roots of  ax^2 +bx+c = 0, find the value of
    (ax_{1}+b)^{-2} +(ax_{2}+b)^{-2}

    Thank you in advanced
    Follow Math Help Forum on Facebook and Google+

  2. #2
    Moo
    Moo is offline
    A Cute Angle Moo's Avatar
    Joined
    Mar 2008
    From
    P(I'm here)=1/3, P(I'm there)=t+1/3
    Posts
    5,618
    Thanks
    6
    Hello !

    I think I figured it out...
    Maybe there is a quicker way, but I have not a lof of time.

    Quote Originally Posted by Recklessid View Post
    Hi,

    If  x_{1}, x_{2} are the roots of  ax^2 +bx+c = 0, find the value of
    N=(ax_{1}+b)^{-2} +(ax_{2}+b)^{-2}

    Thank you in advanced
    Remember the sum of the roots & the product of the roots :

    x_1+x_2=-\frac ba \quad (1) \quad \quad \quad x_1x_2=\frac ca \quad (2)


    N=\frac{1}{(ax_1+b)^2}+\frac{1}{(ax_2+b)^2}

    From (1), we know that x_1=-\frac ba-x_2 \quad \Rightarrow \quad ax_1=-b-ax_2.
    Similarly, ax_2=-b-ax_1.

    Substituting in N :

    \begin{aligned} N&=\frac{1}{(-b-ax_2+b)^2}+\frac{1}{(-b-ax_1+b)^2} \\ \\<br />
&=\frac{1}{(ax_2)^2}+\frac{1}{(ax_1)^2} \\ \\<br />
&=\frac{1}{a^2} \cdot \left(\frac{1}{x_2^2}+\frac{1}{x_1^2}\right) \end{aligned}


    Gathering it in a unique fraction :

    N=\frac{1}{a^2} \cdot \frac{x_1^2+x_2^2}{x_1^2 \cdot x_2^2}

    Completing the square above :

    N=\frac{1}{a^2} \cdot \frac{({\color{red}x_1+x_2})^2-2{\color{blue}x_1x_2}}{({\color{blue}x_1x_2})^2}

    But {\color{blue}x_1x_2}=\frac ca and {\color{red}x_1+x_2}=-\frac ba.


    This simplifies into :

    N=\frac{1}{a^2} \cdot \frac{\left(\frac ba\right)^2-2 \frac ca}{\left(\frac ca\right)^2}

    N=\frac{1}{\bold{a^2}} \cdot \left(\frac{b^2}{a^2}-2 \frac ca\right) \cdot \frac{\bold{a^2}}{c^2}

    N=\frac{1}{c^2} \cdot \left(\frac{b^2}{a^2}-2 \frac{ac}{a^2}\right)

    \boxed{N=\frac{b^2-2ac}{(ac)^2}}


    Follow Math Help Forum on Facebook and Google+

  3. #3
    MHF Contributor red_dog's Avatar
    Joined
    Jun 2007
    From
    Medgidia, Romania
    Posts
    1,252
    Thanks
    5
    Another solution:
    x_1\neq 0, \ x_2\neq 0 because, if x_1=0 then c=0 and ax_2+b=0, so the denominator is 0, contradiction.
    Now, if x_1, \ x_2 are the roots of the equation, then
    ax_1^2+bx_1+c=0
    ax_2^2+bx_2+c=0
    Divide the first equality by x_1 and the second by x_2:
    ax_1+b=-\frac{c}{x_1}
    ax_2+b=-\frac{c}{x_2}
    Then the expression becomes
    \displaystyle\left(\frac{x_1}{c}\right)^2+\left(\f  rac{x_2}{c}\right)^2=\frac{x_1^2+x_2^2}{c^2}=\frac  {(x_1+x_2)^2-2x_1x_2}{c^2}=\frac{\frac{b^2}{a^2}-\frac{2c}{a}}{a^2}=\frac{b^2-2ac}{a^2c^2}
    Follow Math Help Forum on Facebook and Google+

Similar Math Help Forum Discussions

  1. roots
    Posted in the Advanced Algebra Forum
    Replies: 2
    Last Post: December 24th 2010, 03:50 AM
  2. Roots & Imaginary Roots
    Posted in the Math Topics Forum
    Replies: 4
    Last Post: October 4th 2009, 10:24 AM
  3. roots
    Posted in the Advanced Algebra Forum
    Replies: 3
    Last Post: April 29th 2009, 06:27 AM
  4. Roots ><
    Posted in the Algebra Forum
    Replies: 3
    Last Post: October 7th 2008, 09:49 AM
  5. Given 2 imaginary roots find other 2 roots
    Posted in the Pre-Calculus Forum
    Replies: 1
    Last Post: January 26th 2008, 10:24 PM

Search Tags


/mathhelpforum @mathhelpforum