questions are on attachment!!!

Printable View

- Jul 18th 2006, 10:04 AMBrookeURGENT HELP!!! pre-test
questions are on attachment!!!

- Jul 18th 2006, 12:45 PMJameson
#1 A. Use the property that $\displaystyle \log(a)-\log(b)=\log\frac{a}{b}$

- Jul 18th 2006, 01:59 PMSoroban
Hello, Brooke!

Am I reading the problem wrong?

I don't get any of their answers . . .

Quote:

2. The number of bison per acre of range in the wild is: $\displaystyle N \:=\:2.1 \times 10^{5-0.004w}$

where $\displaystyle N$ is the number of bison per acre

and $\displaystyle w$ is the average weight of the bison in pounds.

Find the average weight of a bison in a herd that has an average

of seven animals per acre of range.

. . A: 1247 lbs . . B: 1084 lbs . . C: 1134 lbs . . D: 1020 lbs

We are given: $\displaystyle N = 7$

So we have: .$\displaystyle 2.1 \times 10^{5-0.004w}\:=\:7\quad\Rightarrow\quad 10^{5-0.004w}\:=\:\frac{10}{3}$

Then: .$\displaystyle 5-0.004w\:=\:\log\left(\frac{10}{3}\right)\quad \Rightarrow\quad 0.004w\:=\:5 - \log\left(\frac{10}{3}\right) $

Therefore: .$\displaystyle w \;= \;\frac{5 - \log\left(\frac{10}{3}\right)}{0.004}\;=\;1119.280 314$

- Jul 18th 2006, 02:23 PMgalactusQuote:

Originally Posted by**Jameson**

$\displaystyle log(a)-log(b)=log(\frac{a}{b})$

$\displaystyle log(a)-log(b)\neq\frac{log(a)}{log(b)}$ - Jul 19th 2006, 07:31 AMJamesonQuote:

Originally Posted by**galactus**