please help me simplify the following expression --
(ab)^-1 / (a^-2 + b^-2)
if you could explain it with an appropriate property, that would be great!!
thanks..!!
$\displaystyle \frac{(ab)^{-1}}{a^{-2}+b^{-2}}=\frac{\frac{1}{ab}}{\frac{1}{a^2}+\frac{1}{b^2 }}=\frac{\frac{1}{ab}}{\frac{b^2+a^2}{a^2b^2}}=\fr ac{1}{ab}\cdot\frac{a^2b^2}{a^2+b^2}=\frac{a^2b^2} {ab(a^2+b^2)}=\frac{ab}{a^2+b^2}$
I think that's right. Latex notation was brutal on this one...for me, anyway. I welcome others to detect any errors.
Hi !
A slightly different approach
$\displaystyle \frac{(ab)^{-1}}{a^{-2}+b^{-2}}=\frac{1}{(ab)(a^{-2}+b^{-2})}$
-----------------------
Using the power rule : $\displaystyle a^b a^c=a^{b+c}$
--> $\displaystyle (ab)a^{-2}=ba^{-1}$
-----------------------
$\displaystyle =\frac{1}{ba^{-1}+ab^{-1}}=\frac{1}{\frac ba+\frac ab}=\frac{1}{\frac{b^2+a^2}{ab}}=\frac{ab}{a^2+b^2 }$
one extra equality
Hello, needymathperson!
One different step . . .
We have: .$\displaystyle \frac{(ab)^{-1}} {a^{-2} + b^{-2}} \;\;=\;\;\frac{\dfrac{1}{ab}} {\dfrac{1}{a^2} + \dfrac{1}{b^2}} $$\displaystyle \frac{(ab)^{-1}}{a^{-2} + b^{-2}}$
Multiply top and bottom by $\displaystyle a^2b^2\!:\;\;\frac{a^2b^2\left(\dfrac{1}{ab}\right )}{a^2b^2\left(\dfrac{1}{a^2} + \dfrac{1}{b^2}\right)} \;\;=\;\;\boxed{\frac{ab}{b^2+a^2}}$