# Thread: Canīt solve the inverse function

1. ## Canīt solve the inverse function

Canīt solve the inverse function for X

Y=(2X/((A^0.167*B^0.115*C^0.466*D^11.054)/0.8515))^(1/-0.493)

X=................................................ .....................................?

2. Hello,

Originally Posted by gruvan
Canīt solve the inverse function for X

Y=(2X/((A^0.167*B^0.115*C^0.466*D^11.054)/0.8515))^(1/-0.493)

X=................................................ .....................................?
$\displaystyle Y=\left(\frac{2X}{\frac{A^{0.167}*B^{0.115}*C^{0.4 66}*D^{11.054}}{0.8515}}\right)^{\dfrac{1}{-0.493}}$

Let's rewrite it into :

$\displaystyle Y=\left(\frac{2X}{M} \right)^{\frac 1N}$

I'll leave you the task to write M and N, but there's no trap

$\displaystyle Y^N=\left(\left(\frac{2X}{M}\right)^{\frac 1N}\right)^N$

Because $\displaystyle (a^b)^c=a^{bc}$, we can write :

$\displaystyle Y^n=\left(\frac{2X}{M}\right)^{\frac 1N \cdot N}=\frac{2X}{M}$

Can you continue ?

3. Thanks Moo

Nemas problemas
x=(m*y^n)/2

4. Originally Posted by gruvan
Thanks Moo

Nemas problemas
x=(m*y^n)/2
$\displaystyle 2x=m*y^n$

$\displaystyle \implies \frac{2x}{m}=y^n$

Hey, it's just the same as before ! o.O