I am trying to prove that for any real numbers a,b,c the follwing inequality holds:

(a^2 + b^2 + c^2)/3 >= ((a+b+c)/3)^2

I multiplied out the square on the RHS and simplified.

Then got rid of the fraction on each side.

But what do I do next?

Results 1 to 5 of 5

- Jun 24th 2006, 12:28 PM #1

- Joined
- Jun 2006
- Posts
- 53

## What do I do next

I am trying to prove that for any real numbers a,b,c the follwing inequality holds:

(a^2 + b^2 + c^2)/3 >= ((a+b+c)/3)^2

I multiplied out the square on the RHS and simplified.

Then got rid of the fraction on each side.

But what do I do next?

- Jun 24th 2006, 07:33 PM #2

- Jun 24th 2006, 07:36 PM #3

- Jun 24th 2006, 07:39 PM #4

- Joined
- Jun 2006
- Posts
- 53

- Jun 25th 2006, 04:21 AM #5
If x denotes a sequence of numbers, and AM(x) its arithmetic mean, you're being asked to prove that AM(f(x)) >= f(AM(x)) where f is squaring and f(x) means the sequence of values of f applied to the elements of x. You could prove this using only the fact that f is convex (f' and f'' both positive).