Results 1 to 7 of 7

Math Help - stuck on "e" and "ln" stuff

  1. #1
    Newbie
    Joined
    Jun 2006
    Posts
    4

    stuck on "e" and "ln" stuff

    I'm stuck on how to work with "e" and "ln" in certain ways. This is for a calculus project about track and field statistics and growth constants.

    I'll post the longer stuff later in the post.

    edit: you don't have to read the long part. offering help on the short part right below will be fine. thanks =)
    So here's the quick end of things:

    Known variables:
    Vn1, Vo1, Vn2, Vo2, t1, t2

    The unknown variable is A.

    how can I simplify this. I'm basically trying to get rid of the "ln".

    ln[(Vn1-A)/(Vo1-A)] = (t1/t2)*ln[(Vn2-A)/(Vo2-A)



    I tried doing "e" raised to everything on both sides, so it looks like this:

    e^{ln[(Vn1-A)/(Vo1-A)]} = e^{(t1/t2)*ln[(Vn2-A)/(Vo2-A)}

    And that was when I got stuck. I know I can't split the right side into two parts. For example, I can't do:
    e^{(t1/t2)} * e^{ln[(Vn2-A)/(Vo2-A)}

    What do I do then?



    OK, here's the longer part, just to check if I did anything wrong to begin with. The original problem looks like this. It's two equations to begin with. Variable "k" cancels out later, as I'll show.

    Vn1 = A + (Vo1 - A)*e^(k*t1)

    and

    Vn2 = A + (Vo2 - A)*e^(k*t2)

    Now I simplify each equation, and get this:

    [(Vn1-A)/(Vo1-A)] = e^(k*t1)

    and

    [(Vn2-A)/(Vo2-A)] = e^(k*t2)


    From here, I multiplied everything by ln, and got:

    ln[(Vn1-A)/(Vo1-A)] = k*t1

    and

    ln[(Vn2-A)/(Vo2-A)] = k*t2

    When I do systems of equations, I can cancel out the "k", so it becomes:

    ( ln[(Vn1-A)/(Vo1-A)] / ln[(Vn2-A)/(Vo2-A)] ) = (t1/t2)


    After that, I can either rearrange the equation and get the equation I posted at the beginning of the post, or I can rearrange and get this:

    ln[(Vn1-A)/(Vo1-A)] / t1 = ln[(Vn2-A)/(Vo2-A)] / t2

    I'm not sure which way works better, but either way, i'm trying to still find "A".

    Any way you could help would be appreciated. Thanks,
    -Dan
    Last edited by Dalau; June 17th 2006 at 02:33 PM.
    Follow Math Help Forum on Facebook and Google+

  2. #2
    Global Moderator

    Joined
    Nov 2005
    From
    New York City
    Posts
    10,616
    Thanks
    9
    From the equations system you have,

    \left\{\begin{array}{c} <br />
V_{n1} = A + (V_{01} - A)e^{kt_1}\\<br />
V_{n2} = A + (V_{02} - A)e^{kt_2}<br />
    Why would you ever combine them?!?
    The solution is right there.
    Simply work with the first one (or second).
    V_{n1}=A+V_{01}e^{kt_1}-Ae^{kt_1}
    Thus,
    V_{n1}-V_{01}e^{kt_1}=A-Ae^{kt_1}
    Thus,
    V_{n1}-V_{01}e^{kt_1}=A(1-e^{kt_1})
    Thus,
    A=\frac{V_{n1}-V_{01}e^{kt_1}}{1-e^{kt_1}}
    Follow Math Help Forum on Facebook and Google+

  3. #3
    Newbie
    Joined
    Jun 2006
    Posts
    4
    oops. darn.

    i forgot to say that "k" is also an unknown, which is why i combined equations to try to cancel it out. my appologies. that was my fault.
    Follow Math Help Forum on Facebook and Google+

  4. #4
    Global Moderator

    Joined
    Nov 2005
    From
    New York City
    Posts
    10,616
    Thanks
    9
    Quote Originally Posted by Dalau
    oops. darn.

    i forgot to say that "k" is also an unknown, which is why i combined equations to try to cancel it out. my appologies. that was my fault.
    I did not try it because I am going to sleep soon. But it does you difficult and perhaps no elementary method.

    It does, however, look like some faulty attempt to solve a system of linear-homogenous diffrencial equations, does it? If it is may you display these equations I might be able to solve them.
    Follow Math Help Forum on Facebook and Google+

  5. #5
    Newbie
    Joined
    Jun 2006
    Posts
    4
    so these are the two original equations:

    \left\{\begin{array}{c} <br />
V_{n1} = A + (V_{01} - A)e^{kt_1}\\<br />
V_{n2} = A + (V_{02} - A)e^{kt_2}<br />

    They're heating/cooling equations used in calculus 2, but I'm using it for a slightly different situation. The "V"s represent the velocity of the world record running pace (m/s) for a certain running event. "A" is the unknown maximum world record velocity in that event over the course of an infinite number of years. 'k" is the growth constant. "t" is the time period between two chosen world records. it can be any of the world record over time. So basically, what i'm doing in this project is trying to find what velocity the world record pace is approaching over time.
    Follow Math Help Forum on Facebook and Google+

  6. #6
    Newbie
    Joined
    Jun 2006
    Posts
    4
    quick question:
    is there a way to solve ln(x-y)?
    Follow Math Help Forum on Facebook and Google+

  7. #7
    Global Moderator

    Joined
    Nov 2005
    From
    New York City
    Posts
    10,616
    Thanks
    9
    Quote Originally Posted by Dalau
    quick question:
    is there a way to solve ln(x-y)?
    If you mean,
    \ln (x-y)=y
    No.
    However you can bring it Lambert W function form (but is is inelementary).
    Follow Math Help Forum on Facebook and Google+

Similar Math Help Forum Discussions

  1. Replies: 1
    Last Post: September 16th 2011, 01:08 AM
  2. Replies: 2
    Last Post: June 4th 2011, 12:11 PM
  3. Replies: 2
    Last Post: April 24th 2011, 07:01 AM
  4. Replies: 1
    Last Post: October 25th 2010, 04:45 AM
  5. Replies: 1
    Last Post: June 4th 2010, 10:26 PM

Search Tags


/mathhelpforum @mathhelpforum