For all positive real numbers a,b,c prove that
$\displaystyle \frac {a}{b+c} +$ $\displaystyle \frac {b}{c+a}+$ $\displaystyle \frac {c}{a+b}$$\displaystyle \geq 3/2$
I applied AM-GM but no luck.
For all positive real numbers a,b,c prove that
$\displaystyle \frac {a}{b+c} +$ $\displaystyle \frac {b}{c+a}+$ $\displaystyle \frac {c}{a+b}$$\displaystyle \geq 3/2$
I applied AM-GM but no luck.