Results 1 to 5 of 5

Math Help - Find the Roots

  1. #1
    Newbie
    Joined
    Apr 2008
    Posts
    2

    Find the Roots

    As the title states, find the roots of

    x^2 + (k^2 +1 all over k)x + 1 = 0

    I would perfer a solution using the quadratic formula.
    Follow Math Help Forum on Facebook and Google+

  2. #2
    Behold, the power of SARDINES!
    TheEmptySet's Avatar
    Joined
    Feb 2008
    From
    Yuma, AZ, USA
    Posts
    3,764
    Thanks
    78
    Quote Originally Posted by Seronix View Post
    As the title states, find the roots of

    x^2 + (k^2 +1 all over k)x + 1 = 0

    I would perfer a solution using the quadratic formula.

    Well first what are a,b, and c?

     a =1, b=\frac{k^2+1}{k}, c=1

    Then using the quadratric formula we get

    x=\frac{-\left( \frac{k^2+1}{k}\right) \pm \sqrt{\left( \frac{k^2+1}{k}\right)^2-4 }}{2(1)}

    Lets focus on the radicand for a second

     \left( \frac{k^2+1}{k} \right)^2-4=\frac{k^4+2k^2+1}{k^2}-4=\frac{k^4+2k^2+1}{k^2}-\frac{4k^2}{k^2}=\frac{k^4-2k^2+1}{k^2}

    = \frac{(k^2-1)^2}{k^2}

    Now back to the radical

    x=\frac{-\left( \frac{k^2+1}{k}\right) \pm \sqrt{\left( \frac{(k^2-1)^2}{k^2}\right)^2}}{2(1)}= \frac{-\left( \frac{k^2+1}{k}\right) \pm \left( \frac{(k^2-1)^2}{k}\right)}{2}

    Well that is the hard part.

    Good luck from here.
    Follow Math Help Forum on Facebook and Google+

  3. #3
    Super Member

    Joined
    May 2006
    From
    Lexington, MA (USA)
    Posts
    11,908
    Thanks
    766
    Hello, Seronix!

    x^2 + \left(\frac{k^2 +1}{k}\right)x + 1 \:= \:0

    We have: . x^2 + \left(k + \frac{1}{k}\right)x + 1 \;=\;0

    Factor: . (x + k)\left(x + \frac{1}{k}\right) \:=\:0

    Therefore: . \begin{array}{ccccccc}x + k & = & 0 & \Rightarrow & x &=&\text{-}k \\ \\ [-2mm] x + \frac{1}{k} &=&0 & \Rightarrow & x &=& \text{-}\frac{1}{k} \end{array}

    Follow Math Help Forum on Facebook and Google+

  4. #4
    Newbie
    Joined
    Apr 2008
    Posts
    2
    Quote Originally Posted by Soroban View Post
    Hello, Seronix!


    We have: . x^2 + \left(k + \frac{1}{k}\right)x + 1 \;=\;0

    Factor: . (x + k)\left(x + \frac{1}{k}\right) \:=\:0

    Therefore: . \begin{array}{ccccccc}x + k & = & 0 & \Rightarrow & x &=&\text{-}k \\ \\ [-2mm] x + \frac{1}{k} &=&0 & \Rightarrow & x &=& \text{-}\frac{1}{k} \end{array}

    Um yes, I solved the problem the same way. My problem is my teacher said to use the quadratic formula. It would seem ridiculous to do so since it requires so much work, but I guess i'm a bit curious on how to solve it using the quadratic formula as well. But Thank you nonetheless to both of you =)
    Follow Math Help Forum on Facebook and Google+

  5. #5
    Super Member

    Joined
    May 2006
    From
    Lexington, MA (USA)
    Posts
    11,908
    Thanks
    766
    Hello, Seronix!

    Find the roots of: . x^2 + \frac{k^2 +1}{k}x + 1 \:= \:0
    Multiply through by {\color{blue}k}\!:\;\;kx^2 + (k^2+1)x + k \:=\:0

    Quadratic Formula: . x \;=\;\frac{-(k^2+1) \pm \sqrt{(k^2+1)^2 - 4k^2}}{2k}

    . . x \;=\;\frac{-(k^2+1) \pm\sqrt{k^4 + 2k^2 + 1 - 4k^2}}{2k} \;=\;\frac{-(k^2+1) \pm\sqrt{k^4-2k^2+1}}{2k}

    . . x \;= \;\frac{-(k^2+1) \pm\sqrt{(k^2-1)^2}}{2k} \;=\;\frac{-(k^2+1) \pm (k^2-1)}{2k}


    And we have two roots:

    . . x \;=\;\frac{-(k^2 + 1) + (k^2-1)}{2k} \;=\;\frac{-k^2-1+k^2-1}{2k} \;=\;\frac{-2}{2k} \;=\;\boxed{-\frac{1}{k}}

    . . x \;=\;\frac{-(k^2+1) - (k^2-1)}{2k} \;=\;\frac{-k^2-1 -k^2 + 1}{2k} \;=\;\frac{-2k^2}{2k} \;=\;\boxed{-k}

    Follow Math Help Forum on Facebook and Google+

Similar Math Help Forum Discussions

  1. How to find roots
    Posted in the Pre-Calculus Forum
    Replies: 1
    Last Post: April 15th 2009, 02:26 AM
  2. Find all roots...
    Posted in the Pre-Calculus Forum
    Replies: 2
    Last Post: January 2nd 2009, 06:00 PM
  3. Find all the roots of P(x)
    Posted in the Pre-Calculus Forum
    Replies: 4
    Last Post: December 17th 2008, 08:45 AM
  4. Find all roots
    Posted in the Algebra Forum
    Replies: 4
    Last Post: August 6th 2008, 12:30 AM
  5. Given 2 imaginary roots find other 2 roots
    Posted in the Pre-Calculus Forum
    Replies: 1
    Last Post: January 26th 2008, 10:24 PM

Search Tags


/mathhelpforum @mathhelpforum