$\displaystyle \frac{s}{2s-6}+\frac{1}{4}-\frac{3s}{4s-12}$
Okay i know that LCD is 4(s-3) but i can't see how i get the answer of $\displaystyle \frac{-3}{4(s-3)}$ I cannot see how I get -3 Please help me.
$\displaystyle \frac{s}{2s-6}+\frac{1}{4}-\frac{3s}{4s-12} =$
$\displaystyle \frac{s}{2(s-3)}+\frac{1}{4}-\frac{3s}{4(s-3)} = $
$\displaystyle \frac{2s}{2 \cdot 2(s-3)}+\frac{1 \cdot (s-3)}{4(s-3)}-\frac{3s}{4(s-3)} = \frac{2s + s - 3 - 3s}{4(s-3)} =$
$\displaystyle \frac{-3}{4(s-3)}$