Your answers are correct, but I did them by solving simultaneous equations
I've got a few questions that I believe I solved correctly but wanted to check on. I have graphed them and they seem to check out....
The questions, and my working for them, are as follows:
1: 3x+y=5
-2+3y=4
-------------------------------------
3x+y=5 ->
3x+y-3x=5-3x ->
y=5-3x therefore
if: x=0 y=5
x=1 y=2
x=2 y=(-1)
-------------------------------------
-2x+3y=4 ->
-2x+3y-(-2x)=4-(-2x) ->
3y=4+2x ->
y = 4/3 + (2/3)x therefore
if: x = 0 y = 1 1/3
x = 1 y = 2
x = 2 y = 2 2/3
********************************
answer is: x = 1 y = 2, the lines intersect.
__________________________________________________ _____
2: 2x = y + 1
2x - y = 5
------------------------------------------
2x = y + 1 ->
y = 2x - 1 therefore
if: x = 0 y = (-1)
x = 1 y = 1
x = 2 y = 3
-----------------------------------------
2x - y = 5 ->
2x - y + 2x = 5 + 2x ->
y = 5 + 2x therefore
if: x = 0 y = 5
x = 1 y = 7
x = 2 y = 9
***************************
answer is: none, the lines are parallel
_______________________________________
3: 3x + 2y = 8
6x + 4y = 16
----------------------------------------
3x + 2y = 8 ->
3x + 2y - 3x = 8 - 3x ->
2y = 8 - 3x ->
y = 4 - (3/2)x therefore
If: x=0 y=4
x=1 y=2 1/2
x=2 y=1
-----------------------------------------
6x+4y=16 ->
6x+4y-6x=16-6x ->
4y=16-6x ->
y=4-(3/2)x therefore
If: x=0 y=4
x=1 y=2 1/2
x=2 y=1
*********************************
answer: infinite, the lines coincide
________________________________________
Thanks!