Results 1 to 4 of 4

Math Help - Inequality

  1. #1
    Senior Member
    Joined
    Nov 2007
    Posts
    329

    Inequality

    Prove that if ab + ac + bc = 3:
    8(a + b + c)^2\geq9(a + b)(a + c)(b + c)
    ( a,b,c\ge 0)
    Follow Math Help Forum on Facebook and Google+

  2. #2
    Super Member wingless's Avatar
    Joined
    Dec 2007
    From
    Istanbul
    Posts
    585
    The question says a,b,c\ge 0..
    Follow Math Help Forum on Facebook and Google+

  3. #3
    Senior Member JaneBennet's Avatar
    Joined
    Dec 2007
    Posts
    293
    Suppose one of a,b,c is 0. Then the other two can’t be 0 if the condition ab+bc+ca=3 is to hold. Say, we have a=0. Then bc=3 and the inequality becomes

    \color{white}.\quad. 8\left(b+\frac{3}{b}\right)^2\geq9bc\left(b+\frac{  3}{b}\right)=27\left(b+\frac{3}{b}\right)

    \Leftrightarrow\ 8\left(b+\frac{3}{b}\right)\geq27

    \Leftrightarrow\ 8b^2-27b+24\geq0

    The LHS, as a quadratic expression in b, has negative discriminant and so the inequality is true.

    So now we’ll assume a,b,c>0. Let a=\sqrt{3}\,A,\ b=\sqrt{3}\,B,\ c=\sqrt{3}\,C. Then AB+BC+CA=1 and the inequality becomes

    8(A+B+C)^2\geq9\sqrt{3}(A+B)(B+C)(C+A)

    Since A,B,C are positive and AB+BC+CA=1, we can make the following substitutions:

    A=\tan{\alpha},\ B=\tan{\beta},\ C=\tan{\gamma}

    where \alpha+\beta+\gamma=\frac{\pi}{2}. Then observe that

    A+B=\frac{\sin{\alpha}}{\cos{\alpha}}+\frac{\sin{\  beta}}{\cos{\beta}}

    \color{white}.\hspace{10mm}. =\frac{\sin{\alpha}\cos{\beta}+\cos{\alpha}\sin{\b  eta}}{\cos{\alpha}\cos{\beta}}

    \color{white}.\hspace{10mm}. =\frac{\sin{\left(\alpha+\beta\right)}}{\cos{\alph  a}\cos{\beta}}

    \color{white}.\hspace{10mm}. =\frac{\cos{\left(\frac{\pi}{2}-\left[\alpha+\beta\right]\right)}}{\cos{\alpha}\cos{\beta}}

    \color{white}.\hspace{10mm}. =\frac{\cos{\gamma}}{\cos{\alpha}\cos{\beta}}

    Hence

    (A+B)(B+C)(C+A) = \left(\frac{\cos{\gamma}}{\cos{\alpha}\cos{\beta}}  \right)\left(\frac{\cos{\alpha}}{\cos{\beta}\cos{\  gamma}}\right)\left(\frac{\cos{\beta}}{\cos{\gamma  }\cos{\alpha}}\right)=\frac{1}{\cos{\alpha}\cos{\b  eta}\cos{\gamma}}

    So it comes down to proving this inequality:

    \cos{\alpha}\cos{\beta}\cos{\gamma}\left(\tan{\alp  ha}+\tan{\beta}+\tan{\gamma}\right)^2\ \geq\ \frac{9\sqrt{3}}{8}
    Last edited by JaneBennet; February 22nd 2008 at 12:36 PM.
    Follow Math Help Forum on Facebook and Google+

  4. #4
    Junior Member
    Joined
    Feb 2008
    From
    Melbourne
    Posts
    27
    hmmm... don’t know why I was heavily neg repped on this question =\ but yer .. anyways...

    ^^ top was interesting

    After about 2 pages of working trying to find similarities between the two I got this...


    LHS

    8(a+b+c)^2

    8a^2 + 16ab + 16ac + 8b^2 + 16bc + 8c^2

    8(a^2 + b^2 + c^2) + 16(ac + ab + cd)

    8(a^2 + b^2 + c^2) + 16(3)

    8(a^2 + b^2 + c^2) + 48

    8(a^2 + b^2 + c^2 + 6)

    RHS

    9(a+b)(a+c)(b+c)

    9a^2b + 9a^2c + 9ab^2 + 18abc + 9ac^2 + 9b^2c + 9bc^2

    9a(ab + ac) + 9b(ab + bc) + 9c(ac + bc) +18(abc)

    9a(3-bc) + 9b(3-ac) + 9c(3-ab) +18abc

    27a – 9abc + 27b – 9abc + 27c -9abc + 18abc

    27(a + b + c) – 9abc

    9(3(a + b + c) - abc)

    So we can say….

    8(a^2 + b^2 + c^2 + 6) => 9(3(a + b + c) - abc)

    when ab + cb + bc = 3…..

    I also noticed a + b + c appears In the RHS which also appears in the LHS

    So we can let a + b + c = d

    And say:

    8d^2 => 27d – 9abc

    still doesn’t help unless we know a b or c = 0…
    Follow Math Help Forum on Facebook and Google+

Similar Math Help Forum Discussions

  1. Replies: 2
    Last Post: January 11th 2011, 08:20 PM
  2. Replies: 3
    Last Post: December 12th 2010, 01:16 PM
  3. inequality
    Posted in the Math Challenge Problems Forum
    Replies: 7
    Last Post: July 25th 2010, 06:11 PM
  4. Inequality help
    Posted in the Pre-Calculus Forum
    Replies: 5
    Last Post: July 8th 2010, 06:24 AM
  5. Inequality :\
    Posted in the Advanced Algebra Forum
    Replies: 2
    Last Post: October 12th 2009, 01:57 PM

Search Tags


/mathhelpforum @mathhelpforum