Results 1 to 3 of 3

Math Help - polynomial

  1. #1
    Junior Member ihmth's Avatar
    Joined
    Jan 2008
    Posts
    44

    polynomial

    Here's a problem that i can't answer, pls help:
    Find the remainder when 23^125 - 4*23^82 + 5*23^28 + 23^18 is divided by 23^2 + 23 +1.
    Follow Math Help Forum on Facebook and Google+

  2. #2
    Senior Member topher0805's Avatar
    Joined
    Jan 2008
    From
    Vancouver
    Posts
    336
    You can use long division, although it is a painful process. I would show you but I have to learn the LaTex involved in long division.

    Also, this is not a polynomial. There are no variables, so it is much easier than you think. Simply find the values of the two expressions, then use long division.
    Follow Math Help Forum on Facebook and Google+

  3. #3
    Junior Member ihmth's Avatar
    Joined
    Jan 2008
    Posts
    44
    Is this correct? btw the answer is 0

    23 / (23^2 + 24) = remainder: 23
    23^2 / (23^2 + 24) = remainder: 529
    23^3 / (23^2 + 24) = remainder: 1
    23^4 / (23^2 + 24) = remainder: 23
    ...
    ...
    ...
    so 23^{125} / (23^2 + 24) = remainder: 529
    ----125/3 = 41 r:2

    4*23^{82} / (23^2 + 24) = remainder: 23
    ----82/3 = 27 r:1

    5*23^{28} / (23^2 + 24) = Remainder: 23
    ----28/3 = 9 r:1

    23^{18} / (23^2 + 24) = Remainder: 1
    ----18/3 = 6 r:0

    then 529 - 4*23 + 5*23 + 1 = 553...which is divisible by
    23^2 + 23 + 1 = 553

    therefore the remainder is 0 / no remainder
    Last edited by ihmth; February 18th 2008 at 05:25 AM.
    Follow Math Help Forum on Facebook and Google+

Similar Math Help Forum Discussions

  1. Replies: 1
    Last Post: October 23rd 2011, 07:36 AM
  2. Replies: 1
    Last Post: February 24th 2011, 07:46 PM
  3. Replies: 1
    Last Post: December 15th 2009, 08:26 AM
  4. [SOLVED] dividing polynomial by a polynomial
    Posted in the Algebra Forum
    Replies: 1
    Last Post: February 3rd 2008, 03:00 PM
  5. dividing a polynomial by a polynomial
    Posted in the Algebra Forum
    Replies: 1
    Last Post: August 2nd 2005, 01:26 AM

Search Tags


/mathhelpforum @mathhelpforum