How do I put z = x/ (x + y) in terms of x?
Follow Math Help Forum on Facebook and Google+
It's a simple problem dude! Rewrite it as proportion $\dfrac{z}{1}=\dfrac{x}{x+y}\\ \text{Now, apply cross multiplication} \\ x=z(x+y) \\ x=xz+yz \\ x-xz=yz \\ x(1-z)=yz\\ x=\dfrac{yz}{(1-z)}\tag*{}$
$z = \dfrac{x}{x+y}$ $(x+y)z = x$ $x z + y z = x$ $y z = x-xz$ $y z = x(1-z)$ if $z\neq 1$ then $x = \dfrac{y z}{1-z}$ if $z=1$ then $y=0$ and $x$ can equal anything other than 0.
View Tag Cloud