5^x = 3^(x+1)
Sorry, I typed this on my phone, if its unclear: the 'x' and 'x + 1' are all in superscript.
Any help would be greatly appreciated!
Sent from my SM-G928I using Tapatalk
An alternative way:
$\displaystyle 5^x = 3^{(x+1)}$
$\displaystyle 5^x=3^x*3^1$
$\displaystyle \frac{5^x}{3^x} =3$
$\displaystyle (\frac{5}{3})^x =3$
$\displaystyle \ln((\frac{5}{3})^x) =\ln 3$
$\displaystyle x*\ln(\frac{5}{3}) =\ln 3$
$\displaystyle x=\frac{\ln(3)}{\ln(\frac{5}{3})}$