The equation is

$$\dfrac{1}{a}+b+x=\dfrac{1}{a}+\dfrac{1}{b}+ \dfrac{1}{x} $$

I've tried

$$\require{cancel}\dfrac{1+ab+ax}{a}=\dfrac{bx+ax+ ab}{abx}\\abx(1+ab+ax)=a(bx+ax+ab)\\\cancel{abx}+a ^2b^2x+a^2bx^2=\cancel{abx}+a^2x+a^2b\\a^2b^2x+a^2 bx^2=a^2x+a^2b$$

But, don't understand how to solve further. Can somebody show step by step please. Thanks!