Results 1 to 4 of 4

Thread: Need Help Exponents

  1. #1
    TH1
    TH1 is offline
    Newbie
    Joined
    Jul 2007
    Posts
    22

    Need Help Exponents

    I need to write these in exponential form and use exponent laws to simplify and evaluate any help would be appreciated

    $\displaystyle
    \sqrt{1000} X \sqrt[3]{1000} / \sqrt[6]{1000}
    $
    Follow Math Help Forum on Facebook and Google+

  2. #2
    Super Member

    Joined
    May 2006
    From
    Lexington, MA (USA)
    Posts
    12,028
    Thanks
    848
    Hello, TH1;98010!

    Simplify and evaluate: .$\displaystyle \frac{
    \sqrt{1000}\cdot\sqrt[3]{1000}}{\sqrt[6]{1000}}$
    Write in exponential form:

    . . $\displaystyle \frac{(10^3)^{\frac{1}{2}}\cdot(10^3)^{\frac{1}{3} }}{(10^3)^{\frac{1}{6}}} \;=\;\frac{10^{\frac{3}{2}}\cdot10^1}{10^{\frac{1} {2}}} \;= \;10^{(\frac{3}{2}+1-\frac{1}{2})} \;=\;10^2\;=\;100$

    Follow Math Help Forum on Facebook and Google+

  3. #3
    TH1
    TH1 is offline
    Newbie
    Joined
    Jul 2007
    Posts
    22
    Thanks for the help I have a couple more since I couldnt work out the code


    $\displaystyle
    \left( \sqrt{64} \right)^2 / \sqrt[3]{64}
    $

    $\displaystyle
    4+4^1 / 4-4{^1}
    $
    For the second question the exponents are negative both of them

    $\displaystyle
    \sqrt{4^3}(\sqrt[5]{4^4}) / \sqrt{2^10}
    $
    Follow Math Help Forum on Facebook and Google+

  4. #4
    Super Member

    Joined
    May 2006
    From
    Lexington, MA (USA)
    Posts
    12,028
    Thanks
    848
    Hello,TH1!

    $\displaystyle \frac{\left( \sqrt{64} \right)^2}{\sqrt[3]{64}}$

    We have: .$\displaystyle \frac{(64^{\frac{1}{2}})^2}{64^{\frac{1}{3}}} \;=\;\frac{64^1}{64^{\frac{1}{3}}} \;=\;64^{(1-\frac{1}{3})} \;=\;64^{\frac{2}{3}}\;=\;(\sqrt[3]{64})^2 \;=\;4^2\;=\;16$



    $\displaystyle \frac{4+4^{-1}}{4-4^{-1}}$
    Multiply by $\displaystyle \frac{4}{4}\!:\;\;\frac{4}{4}\cdot\frac{4 + 4^{-1}}{4 - 4^{-1}} \;=\;\frac{16+1}{16-1} \;=\; \frac{17}{15}$


    $\displaystyle \frac{\sqrt{4^3}\cdot\sqrt[5]{4^4}}{\sqrt{2^{10}}}$
    Change all the bases to 2s.

    $\displaystyle \frac{\sqrt{(2^2)^3}\cdot\sqrt[5]{(2^2)^4} }{\sqrt{2^{10}}} \;=\;\frac{(2^6)^{\frac{1}{2}} (2^8)^{\frac{1}{5}}} {(2^{10})^{\frac{1}{2}}} \;=\;\frac{2^3\cdot2^{\frac{8}{5}}}{2^5} \;=\;2^{(3+\frac{8}{5}-5)} \;=\;2^{-\frac{2}{5}}$

    Follow Math Help Forum on Facebook and Google+

Similar Math Help Forum Discussions

  1. [SOLVED] Exponents and Log Help!!
    Posted in the Algebra Forum
    Replies: 17
    Last Post: Aug 14th 2011, 10:21 AM
  2. Exponents
    Posted in the Algebra Forum
    Replies: 8
    Last Post: Apr 24th 2010, 04:30 PM
  3. exponents
    Posted in the Algebra Forum
    Replies: 2
    Last Post: Apr 17th 2010, 08:37 AM
  4. Exponents
    Posted in the Algebra Forum
    Replies: 2
    Last Post: Aug 18th 2008, 09:51 PM
  5. exponents
    Posted in the Algebra Forum
    Replies: 2
    Last Post: Apr 28th 2008, 01:53 PM

Search Tags


/mathhelpforum @mathhelpforum