Originally Posted by

**SengNee** Find the quotient and remainder when $\displaystyle P(x)=2x^4+3x^3-x^2+5x-6$ is divided by $\displaystyle x^2+x-2$.

Answer:

Quotient=$\displaystyle 2x^2+x+2$

Remainder=$\displaystyle 5x-2$

Is the answers right?

If yes, then...

Let,

Quotient=Q(x)=$\displaystyle 2x^2+x+2$

Remainder=R(x)=$\displaystyle 5x-2$

Divisor=D(x)=$\displaystyle x^2+x-2$

When $\displaystyle x=-1$,

P(-1)=-13

D(-1)=-2

Q(-1)=3

R(-1)=-7

$\displaystyle \frac {P(-1)}{D(-1)}$

=$\displaystyle \frac {-13}{-2}$

=6$\displaystyle \frac {1}{2}$

=6 remain 1

≠Q(-1) remain R(-1)

≠3 remain -7