the question says: Use an identity to find solutions on the interval [0,2pi]
sec^2 x + tanx = 3
thanks
Hello, kenan!
Use: .$\displaystyle \sec^2\!\theta \;=\;\tan^2\!\theta + 1$Use an identity to find solutions on the interval $\displaystyle [0,\,2\pi]$
. . $\displaystyle \sec^2\!x + \tan x \:= \:3$
Then we have: .$\displaystyle \tan^2\!x + 1 + \tan x \;=\;3$
. . which is a quadratic:] .$\displaystyle \tan^2\!x + \tan x - 2 \:=\:0$
. . which factors: .$\displaystyle (\tan x -1)(\tan x + 2)\:=\:0$
Then we have:
$\displaystyle \tan x -1 \:=\:0\quad\Rightarrow\quad \tan x \:=\:1\quad\Rightarrow\quad x \:=\:\frac{\pi}{4},\:\frac{5\pi}{4}$
$\displaystyle \tan x + 2 \:=\:0\quad\Rightarrow\quad \tan x \:=\:-2\quad\Rightarrow\quad x \:=\:\tan^{-1}(-2) \:\approx\:2.034,\;5.176$