Page 2 of 2 FirstFirst 12
Results 16 to 27 of 27
Like Tree6Thanks

Math Help - 1+1=0?

  1. #16
    MHF Contributor
    Joined
    Nov 2010
    Posts
    1,935
    Thanks
    784

    Re: 1+1=0?

    Quote Originally Posted by Hartlw View Post
    I don't see 1/a defined, or proof that (1/a)xa=1, nor do I see subtraction.
    Assuming it can be done, can you assume that if you can come up with a specific system that satisfies all the axioms, the proof is true for any system that satisfies all the axioms, intuitively it looks like you can.
    See the OP. Each line includes .................................
    Each axiom for multiplication is listed after each set of .................................................
    Follow Math Help Forum on Facebook and Google+

  2. #17
    MHF Contributor
    Joined
    Nov 2013
    From
    California
    Posts
    2,789
    Thanks
    1149

    Re: 1+1=0?

    Quote Originally Posted by Hartlw View Post
    Another long walk to the library.

    When I got home we couldn't get on the internet again. It looks like you have my IP and can attack my home system at will. Given you are a large anonymous organization and I have a family, that's pretty scary.

    If you don't want me responding, why not just out-right ban me, at least then people will know my lack of response is not acquiescence.

    EDIT: Hopefully I don't get the library shut down. I notice that when I went back on after exiting I was already registered. Are you able to identify IP's.
    get help
    Follow Math Help Forum on Facebook and Google+

  3. #18
    MHF Contributor

    Joined
    Mar 2011
    From
    Tejas
    Posts
    3,401
    Thanks
    762

    Re: 1+1=0?

    Quote Originally Posted by Hartlw View Post
    Another long walk to the library.

    I was referring to post #9, where I don't see minus or 1/a. I'll assume Deveno can do it.
    However, why bother with esoteric systems? If you are not going to prove OP without using only the OP itself, and not an externally defined system, why bother with esoteric systems?

    The rational numbers satisfy the OP.
    1+1=0 -> 2x1 = 0 -> 1=0, contradiction.

    When I got home we couldn't get on the internet again. It looks like you have my IP and can attack my home system at will. Given you are a large anonymous organization and I have a family, that's pretty scary.

    If you don't want me responding, why not just out-right ban me, at least then people will know my lack of response is not acquiescence.

    EDIT: Hopefully I don't get the library shut down. I notice that when I went back on after exiting I was already registered. Are you able to identify IP's.
    The original post lists the axioms for a field. Not very well, but I assume they are being copied from a book somewhere, where the language is probably better. In fields, the existence of $-a$ for every $a$, and $\dfrac{1}{a}$ for every $a \neq 0$ is "part of the deal".

    It is NOT a theorem in ALL fields that $1 + 1 = 0$ and similarly for $1 + 1 \neq 0$. In some fields the first is true, and the second is false (these fields are called characteristic 2 fields), and in some fields the first is false, and the second is true (like the rational numbers, for example). The characteristic of a field is not part and parcel of the definition of a field: different fields may have different characteristics (analogous to how different vector spaces may have different dimensions).

    I sincerely doubt this forum as an organization is "attacking" your computer. I do suspect you may have picked up some malware somewhere, and I recommend doing an anti-virus full-disk scan after booting up into safe mode. I tend to carpet-bomb with Kaspersky, AVG, Malwarebytes, Spybot S&D, etc. and even then some stuff gets through.

    vBulletin software (which I assume this forum uses) CAN recognize IP addresses (unless you are using an anonymizer proxy, it's not that difficult for your IP to be discovered, after all the server at an internet IP address needs to know where to send the web pages TO), but most ISP's assign "public" IP addresses dynamically, which means you get a new one every time you re-connect to the internet. My guess is that the people who maintain the library computers aren't that savvy about cookie management, and do not regularly flush the internet cache of the machines there. Just a guess, but if that is so, it could be that ANYONE who used the same library computer you did, and navigated to this site, might automatically be logged on as you.

    You should be able to disable this in your user control panel, but you will have to enter your username and password for EVERY visit. If you notice any evidence of someone tampering with your account, try PMing Dan (topsquark).
    Thanks from topsquark
    Follow Math Help Forum on Facebook and Google+

  4. #19
    Forum Admin topsquark's Avatar
    Joined
    Jan 2006
    From
    Wellsville, NY
    Posts
    10,212
    Thanks
    419
    Awards
    1

    Re: 1+1=0?

    Quote Originally Posted by Hartlw View Post
    When I got home we couldn't get on the internet again. It looks like you have my IP and can attack my home system at will. Given you are a large anonymous organization and I have a family, that's pretty scary.

    If you don't want me responding, why not just out-right ban me, at least then people will know my lack of response is not acquiescence.

    EDIT: Hopefully I don't get the library shut down. I notice that when I went back on after exiting I was already registered. Are you able to identify IP's.
    Yes, I can identify IPs. But as I have told you several times we at the Forum have not sent you a virus, nor have we been blocking your access to certain threads. It's not all about you, others are having problems as well.

    Since you've apparently been ignoring my (multiple) PMs on this issue, just how do you want me to handle this? I'm trying to contact mash, who apparently gone AWOL again, as I've told you. Stop being paranoid.

    Why don't you think it over for a week.

    -Dan
    Last edited by topsquark; June 22nd 2014 at 10:57 AM.
    Follow Math Help Forum on Facebook and Google+

  5. #20
    Banned
    Joined
    Aug 2010
    Posts
    961
    Thanks
    98

    Re: 1+1=0?

    The answer to OP is yes, 1+1 = 0 is possible, depending on the field definitions.
    For ex, define a,b=0,1 and 1+1=0. Then by suitable definition, the other axioms are satisfied.
    For ex, how would you define 1+0 to satisfy the Field Axioms?

    The key concept is definition. Once you accept it, there is nothing unnatural about 1+1=0. It is unnatural only from the perspective of what we are familiar with.

    Abstract examples or terminology without definitions, or reference to them, is meaningless and annoying at the level of this OP.

    Some other examples of Fields:

    Ex1: 4-element field: Field (mathematics) - Wikipedia, the free encyclopedia.
    Note 1+1=0 in this field also.

    Ex2: Zp: a,b,c.. are 0,1,2…p-1. a+b = a+b modp, axb =axb modp, (g modp is remainder after division of g by p) and it can be verified the field axioms are satisfied.

    Ex3: a+b√2, a,b rational
    a+b√2=c+d√2 if a=c and b=d
    0=0+0√2
    1=1+0√2
    (a+b√2)+(c+d√2)=(a+c)+(b+d)√2
    (a+b√2)(c+d√2)=[(ac+2bd)+(b+d)√2]
    (a+b√2)X=c+d√2, multiply both sides by a-b√2 to solve for X.

    Romsek, thanks for your solicitation. Got help for my paranoia from Verizon Tech Support in India. The guy was great: not only got me back on the internet (got an answer), but insisted on looking for the root cause and found it, the true scientific attitude. I am relying on what I have read of “Malwarebytes” to completely cure my paranoia. Hope it works if needed.
    Last edited by Hartlw; June 30th 2014 at 10:48 AM.
    Follow Math Help Forum on Facebook and Google+

  6. #21
    Banned
    Joined
    Aug 2010
    Posts
    961
    Thanks
    98

    Re: 1+1=0?

    Ref post # 9

    F(0,1,a,a+1) Is meaningless.

    Ie, given F(a,b,c,d) you can’t define d by the field. d is part of the definition of the field. It’s used to define the field. The elements used to define a field can’t be defined by the field. It’s a circular definition.
    Follow Math Help Forum on Facebook and Google+

  7. #22
    MHF Contributor
    Joined
    Nov 2010
    Posts
    1,935
    Thanks
    784

    Re: 1+1=0?

    Quote Originally Posted by Hartlw View Post
    Ref post # 9

    F(0,1,a,a+1) Is meaningless.

    Ie, given F(a,b,c,d) you can’t define d by the field. d is part of the definition of the field. It’s used to define the field. The elements used to define a field can’t be defined by the field. It’s a circular definition.
    I agree, F(0,1,a,a+1) is meaningless. However, that was not written anywhere in post #9. Deveno wrote F = \{0,1,a,a+1\}. What you wrote appears to be a function that takes four variables as input. Deveno wrote F is a set of four elements. He then explained the addition and multiplication for the elements of that set (in other words, he defined binary operators + and \cdot on F). He then showed how you can check that the set along with its two binary operators forms a field (by verifying the field axioms). This is a standard construction for the field of four elements. I saw similar constructions in both a text by Dummit and Foote as well as a text by Rotman. If you want me to look it up, I can probably give you exact page numbers for you to see it in print if you prefer.
    Follow Math Help Forum on Facebook and Google+

  8. #23
    Banned
    Joined
    Aug 2010
    Posts
    961
    Thanks
    98

    Re: 1+1=0?

    By F(0,1,a,a+1) I obviously meant the field F={0,1,a,a+1} which says:
    a+1 is the sum of a and 1.
    but what is the sum of a and 1? a+1
    the classic circular definition.

    F={0,1,a,b} allows me to define a and b as I like.
    F={0,1,a,a+1} only allows me to define a. What is a+1?

    Ie, F={0,1,a,a+1} is undefined and therefore meaningless, as is everything else that follows in the subject post.
    Follow Math Help Forum on Facebook and Google+

  9. #24
    MHF Contributor
    Joined
    Nov 2010
    Posts
    1,935
    Thanks
    784

    Re: 1+1=0?

    Quote Originally Posted by Hartlw View Post
    By F(0,1,a,a+1) I obviously meant the field F={0,1,a,a+1} which says:
    a+1 is the sum of a and 1.
    but what is the sum of a and 1? a+1
    the classic circular definition.

    F={0,1,a,b} allows me to define a and b as I like.
    F={0,1,a,a+1} only allows me to define a. What is a+1?

    Ie, F={0,1,a,a+1} is undefined and therefore meaningless, as is everything else that follows in the subject post.
    Read up on free groups and a+1 makes sense. Again, the notation used is a standard notation. Arguing on this forum that standard notation is undefined is rather... fruitless? I mean, it is not an argument with us. It is an argument with a much larger mathematical community that has accepted the notation as standard.
    Thanks from Deveno and romsek
    Follow Math Help Forum on Facebook and Google+

  10. #25
    MHF Contributor

    Joined
    Mar 2011
    From
    Tejas
    Posts
    3,401
    Thanks
    762

    Re: 1+1=0?

    Quote Originally Posted by Hartlw View Post
    By F(0,1,a,a+1) I obviously meant the field F={0,1,a,a+1} which says:
    a+1 is the sum of a and 1.
    but what is the sum of a and 1? a+1
    the classic circular definition.

    F={0,1,a,b} allows me to define a and b as I like.
    F={0,1,a,a+1} only allows me to define a. What is a+1?

    Ie, F={0,1,a,a+1} is undefined and therefore meaningless, as is everything else that follows in the subject post.
    This is a bit of a detour, but I hope it does someone some good.

    Most young children are familiar with the expression:

    1 + 1 = 2 (Not using any "fancy exotic" system, here. These are natural numbers).

    If you ask many mathematicians, they might say: "that's not an equation, it's a definition".

    One of the notable features about the natural numbers is its RECURSIVE nature: we define "bigger numbers" in terms of "smaller numbers we already know". The main tool we have in this regard is called the SUCCESSOR function, which, given a natural number $k$ ($k$ is just a symbol here) gives us "the next natural number" (it emulates formally the process of "counting" as we might do on our fingers, or using stones).

    Now addition is also defined "recursively", by:

    $k + 0 = k$
    $k + s(m) = s(k + m)$, where $s$ denote the successor function.

    If $m$ is the natural number 0 (the only natural number we "start out with"), this gives us:

    $k + s(0) = s(k + 0) = s(k)$.

    The SYMBOL 1 is assigned to $s(0)$, by long-standing historical convention (thank the ancient Indians and Arabs for this, and also that Fibonacci's father was a well-traveled merchant, who picked up lots of odd trivia from his trade).

    So we may re-write the above as:

    $k + 1 = s(k)$.

    This means we can use "k + 1" as a stand-in for s(k). In particular, letting $k = s(0) = 1$, we have:

    $1 + 1 = s(1) = 2$ <---another historical convention.

    If we wanted, we could keep using "1 + 1" instead of the symbol 2, although this would take up much more space, when performed arithmetic.

    When creating an "addition table" for the natural numbers, there would be nothing wrong with using 1+1 instead of 2 in the table, but it doesn't tell us "which other natural number" 1+1 is.

    But I see you are not satisfied that defining the 4-element field as I have isn't "circular" (it's actually tautological, which is slightly different). We could take a different approach, perhaps this will be more amenable to you:

    Define $F$ as the vector space over the field $\Bbb Z_2$ (which has only two elements, 1 and 0) of dimension 2. This gives us 4 elements:

    $F = \{(0,0),(1,0),(0,1),(1,1)\}$.

    The addition should be clear: we are taking (1,0) and (0,1) as a basis, and using the vector space addition. What is not clear at the outset, is that we can define a multiplication on this set as well:

    (0,0)*(0,0) = (0,0)
    (0,0)*(1,0) = (0,0)
    (0,0)*(0,1) = (0,0)
    (0,0)*(1,1) = (0,0)

    (1,0)*(1,0) = (1,0)
    (1,0)*(0,1) = (0,1)
    (1,0)*(1,1) = (1,1)

    (0,1)*(0,1) = (1,1)
    (0,1)*(1,1) = (1,0)

    (1,1)*(1,1) = (0,1) and the products not listed use commutativity.

    Again, it is tedious to show that this multiplication is associative and that it distributes over the vector addition, but it can be done.

    If we use the $\Bbb Z_2$-linear mapping $L: F \to \{0,1,a,a+1\}$ (as in my previous posts) given by:

    $L((1,0)) = 1$
    $L((0,1)) = a$, we obtain an isomorphism of vector spaces, and you can verify for all 16 possible products that $L(v_1\ast v_2) = L(v_1)\ast L(v_2)$, so that these are equivalent field structures (only the names have been changed, to protect the innocent).

    There is a 3rd construction of $F$ as well, that uses a quotient ring of $\Bbb Z_2[x]$ modded by the ideal generated by the polynomial $x^2 + x + 1$, but I think you might not like all the work you have to do to make it "pay off".
    Last edited by Deveno; July 1st 2014 at 06:44 AM.
    Thanks from romsek
    Follow Math Help Forum on Facebook and Google+

  11. #26
    Banned
    Joined
    Aug 2010
    Posts
    961
    Thanks
    98

    Re: 1+1=0?

    Quote Originally Posted by Hartlw View Post
    By F(0,1,a,a+1) I obviously meant the field F={0,1,a,a+1} which says:
    a+1 is the sum of a and 1.
    but what is the sum of a and 1? a+1
    the classic circular definition.

    F={0,1,a,b} allows me to define a and b as I like.
    F={0,1,a,a+1} only allows me to define a. What is a+1?

    Ie, F={0,1,a,a+1} is undefined and therefore meaningless, as is everything else that follows in the subject post.
    The two pluses in the “Field” F = {0,1,a,1+a, +,x} obviously denote the same operation ( same symbol), in which case F is not a field (see above) and post #9 is meaningless.

    If the first plus means something else, it should be denoted x1 and a+11 defined. There is the trivial definition that it is just a symbol for a fourth element which can be arbitrarily assigned. In any case it doesn’t apply to post #9, which doesn’t differentiate symbols.

    I note, following a suggestion of SlipEternal’s, that Dummit and Foote define F(a,b,c,d) as the field generated by a,b,c,d. 2nd Ed, Amazon “Look Inside” and there is a symbol table. (Granted, I am making an assumption about what “generated” means in this case (generated not in index)). Almost wavered on buying a used version of 2nd ed but 1000pgs is ridiculous for a bloated B&M, judging from Table of Contents. That’s why I like older books, and they're better made.

    Back to the public computer. Long walk on a hot day.
    Follow Math Help Forum on Facebook and Google+

  12. #27
    Forum Admin topsquark's Avatar
    Joined
    Jan 2006
    From
    Wellsville, NY
    Posts
    10,212
    Thanks
    419
    Awards
    1

    Re: 1+1=0?

    I probably shouldn't do this over the public forum, but as there were so many affected by it...

    Hartlw has been banned for his disrespect and being (pointlessly) argumentative.

    -Dan
    Follow Math Help Forum on Facebook and Google+

Page 2 of 2 FirstFirst 12

/mathhelpforum @mathhelpforum