log b (a) =x
b^x =a
loga((b^x)=loga (a)
x(log a(b)=1
x=1/loga(b)
1) Prove that $\log_{b} a + \log_{c} b + \log_{a} c = \displaystyle{\frac{1}{\log_{a} b}} + \displaystyle{\frac{1}{\log_{b} c}} + \displaystyle{\frac{1}{\log_{c} a}}$
2) Prove that if $\log_{r} p = q$ and $\log_{q} r = p$, then $\log_{q} p = pq$
If you could point me in the right direction I should be able to take it from there.
Thanks again.