I think I'm over-thinking this problem and I need some help.
4(2x^{2}+y^{3})(3x^{2})
6x(x^{2}+y^{3})(x+y)
How can this be simplified?
Hello, Gisella!
We can reduce it a little . . .
$\displaystyle \text{Simplify: }\:\frac{4(2x^2+y^3)(3x^2)}{6x(x^2+y^3)(x+y)}$
We have: .$\displaystyle \frac{12x^2(2x^2+y^2)}{6x(x^2+y^3)(x+y)}$
Reduce: .$\displaystyle \frac{{\color{red}\rlap{//}}12\,^2\cdot{\color{green}\rlap{//}} x^2\,^x \cdot (2x^2+y^3)}{{\color{red}\rlap{/}}6\cdot {\color{green}\rlap{/}}x\cdot(x^2+y^3)(x+y)}$
Answer: .$\displaystyle \frac{2x(2x^2+y^3)}{(x^2+y^3)(x+y)}$