Results 1 to 2 of 2

Math Help - Why do graphs such y = (1/4)^x + 4 still have values for 4?

  1. #1
    Junior Member
    Joined
    Mar 2013
    From
    Australia
    Posts
    52

    Why do graphs such y = (1/4)^x + 4 still have values for 4?

    Because y = 4 is the asymptote?
    Follow Math Help Forum on Facebook and Google+

  2. #2
    MHF Contributor

    Joined
    Apr 2005
    Posts
    15,373
    Thanks
    1314

    Re: Why do graphs such y = (1/4)^x + 4 still have values for 4?

    I have no clue what you mean by this. What do you mean by "values for 4"? My first thought was that "for 4" meant "for x= 4" but that's easy to calculate- if x= 4, then y= (1/4)^4+ 4= \frac{1}{64}+ \frac{256}{64}= \frac{257}{64}. If you mean "there exist x such that y= 4", it is not true. If (1/4)^x+ 4= 4, then (1/4)^x= 0 and there is no such x.
    Follow Math Help Forum on Facebook and Google+

Similar Math Help Forum Discussions

  1. Replies: 1
    Last Post: May 11th 2012, 08:19 PM
  2. Predicting maximum values from minimum values
    Posted in the Statistics Forum
    Replies: 0
    Last Post: October 4th 2011, 07:42 AM
  3. Replies: 1
    Last Post: June 1st 2011, 01:47 AM
  4. Graphs of y=2x^2 + bx + 4 for different values of b
    Posted in the Pre-Calculus Forum
    Replies: 1
    Last Post: March 29th 2010, 04:49 AM
  5. Replies: 1
    Last Post: May 24th 2009, 05:16 AM

Search Tags


/mathhelpforum @mathhelpforum