Results 1 to 3 of 3

Math Help - factorising over complex numbers:

  1. #1
    Member
    Joined
    Feb 2010
    From
    in the 4th dimension....
    Posts
    122
    Thanks
    9

    factorising over complex numbers:

    Factorize: 3iu^2+26iu+4u^2+3i-4 over complex numbers, where i represents the imaginary unit.


    Thanks
    Follow Math Help Forum on Facebook and Google+

  2. #2
    MHF Contributor
    Prove It's Avatar
    Joined
    Aug 2008
    Posts
    11,504
    Thanks
    1400

    Re: factorising over complex numbers:

    \displaystyle \begin{align*} 3i\,u^2 + 26i\,u + 4u^2 + 3i - 4 &= \left( 4 + 3i \right) u^2 + 26i\,u + 3i - 4 \\ &= \left( 4 + 3i \right) \left[ u^2 + \left( \frac{26i}{4 + 3i} \right) u + \left( \frac{3i - 4}{4 + 3i} \right) \right] \\ &= \left( 4 + 3i \right) \left\{ u^2 + \left[ \frac{ 26i \left( 4 - 3i \right) }{\left( 4 + 3i \right) \left( 4 - 3i \right)} \right] u + \left[ \frac{\left( 3i - 4 \right) \left( 4 - 3i \right)}{\left( 4 + 3i \right) \left( 4 - 3i \right) } \right] \right\} \\ &= \left( 4 + 3i \right) \left[ u^2 + \left( \frac{104i - 78i^2 }{25} \right) u + \left( \frac{12i - 3i^2 - 16 + 12i}{25} \right) \right] \\ &= \left( 4 + 3i \right) \left[ u^2 + \left( \frac{78 + 104i}{25} \right) u + \left( \frac{-13 + 24i}{25} \right) \right] \\ &= \left( 4 + 3i \right) \left[ u^2 + \left( \frac{78 + 104i}{25} \right) u + \left( \frac{39 + 52i}{25} \right) ^2 - \left( \frac{39 + 52i}{25} \right) ^2 + \left( \frac{-13 + 24i}{25} \right) \right] \end{align*}

    \displaystyle \begin{align*} &= \left( 4 + 3i \right) \left[ \left( u + \frac{39 + 52i}{25} \right) ^2 - \left( \frac{ -1183 + 4056i }{625} \right) + \left( \frac{-325 + 600i}{625} \right) \right] \\ &= \left( 4 + 3i \right) \left[ \left( u + \frac{39 + 52i}{25} \right) ^2 - \left( \frac{-858 + 3456i}{625} \right)  \right] \\ &= \left( 4 + 3i \right) \left[ \left( u + \frac{ 39 + 52i }{ 25 } \right) ^2 - \left( \frac{\sqrt{ -858 + 3456i }}{25} \right) ^2 \right] \\ &= \left( 4 + 3i \right) \left( u + \frac{39 + 52i - \sqrt{ -858 + 3456i } }{25} \right) \left( u + \frac{ 39 + 52i + \sqrt{ -858 + 3456i } }{ 25 } \right) \end{align*}

    If you want you CAN get a proper complex number for this square root, but it will be in terms of sines and cosines.
    Follow Math Help Forum on Facebook and Google+

  3. #3
    Member
    Joined
    Feb 2010
    From
    in the 4th dimension....
    Posts
    122
    Thanks
    9

    Re: factorising over complex numbers:

    Quote Originally Posted by Prove It View Post
    \displaystyle \begin{align*} 3i\,u^2 + 26i\,u + 4u^2 + 3i - 4 &= \left( 4 + 3i \right) u^2 + 26i\,u + 3i - 4 \\ &= \left( 4 + 3i \right) \left[ u^2 + \left( \frac{26i}{4 + 3i} \right) u + \left( \frac{3i - 4}{4 + 3i} \right) \right] \\ &= \left( 4 + 3i \right) \left\{ u^2 + \left[ \frac{ 26i \left( 4 - 3i \right) }{\left( 4 + 3i \right) \left( 4 - 3i \right)} \right] u + \left[ \frac{\left( 3i - 4 \right) \left( 4 - 3i \right)}{\left( 4 + 3i \right) \left( 4 - 3i \right) } \right] \right\} \\ &= \left( 4 + 3i \right) \left[ u^2 + \left( \frac{104i - 78i^2 }{25} \right) u + \left( \frac{12i - 3i^2 - 16 + 12i}{25} \right) \right] \\ &= \left( 4 + 3i \right) \left[ u^2 + \left( \frac{78 + 104i}{25} \right) u + \left( \frac{-13 + 24i}{25} \right) \right] \\ &= \left( 4 + 3i \right) \left[ u^2 + \left( \frac{78 + 104i}{25} \right) u + \left( \frac{39 + 52i}{25} \right) ^2 - \left( \frac{39 + 52i}{25} \right) ^2 + \left( \frac{-13 + 24i}{25} \right) \right] \end{align*}

    \displaystyle \begin{align*} &= \left( 4 + 3i \right) \left[ \left( u + \frac{39 + 52i}{25} \right) ^2 - \left( \frac{ -1183 + 4056i }{625} \right) + \left( \frac{-325 + 600i}{625} \right) \right] \\ &= \left( 4 + 3i \right) \left[ \left( u + \frac{39 + 52i}{25} \right) ^2 - \left( \frac{-858 + 3456i}{625} \right)  \right] \\ &= \left( 4 + 3i \right) \left[ \left( u + \frac{ 39 + 52i }{ 25 } \right) ^2 - \left( \frac{\sqrt{ -858 + 3456i }}{25} \right) ^2 \right] \\ &= \left( 4 + 3i \right) \left( u + \frac{39 + 52i - \sqrt{ -858 + 3456i } }{25} \right) \left( u + \frac{ 39 + 52i + \sqrt{ -858 + 3456i } }{ 25 } \right) \end{align*}

    If you want you CAN get a proper complex number for this square root, but it will be in terms of sines and cosines.



    But wolfram alpha gives out this...
     \framebox{3iu^2+26iu+4u^2+3i-4 = (u+(3+4i))((4+3i)u+i)}
    Wolfram doesn't give out a solution for this, and I wanted to know how was it done...
    Any idea how it was done?
    factorise3iu^2+26iu+4u^2+3i-4 - Wolfram|Alpha
    Last edited by earthboy; February 10th 2013 at 05:55 AM.
    Follow Math Help Forum on Facebook and Google+

Similar Math Help Forum Discussions

  1. Factorising polynomial over complex numbers
    Posted in the Algebra Forum
    Replies: 5
    Last Post: March 20th 2011, 04:02 AM
  2. factorising complex numbers
    Posted in the Pre-Calculus Forum
    Replies: 1
    Last Post: February 17th 2011, 12:58 AM
  3. Replies: 1
    Last Post: September 27th 2010, 03:14 PM
  4. Factorising Imaginary numbers
    Posted in the Calculus Forum
    Replies: 5
    Last Post: May 4th 2010, 09:07 AM
  5. Replies: 1
    Last Post: May 24th 2007, 03:49 AM

Search Tags


/mathhelpforum @mathhelpforum