Hi,

I'm trying to find an eigenvector of a matrix. I have λ = 1, so my matrix (A- λI) is

$\displaystyle [-0.5253, 0.8593, -0.1906; -0.8612, -0.5018, 0.1010; 0.1817, 0.1161, -0.0236]$

And from rows 2 and 3 I get these simultaneous equations

$\displaystyle -0.8612t_{1}-0.5018t_{2}+0.1010t_{3}=0$

$\displaystyle 0.1817t_{1}+0.1161t_{2}-0.0236t_{3}=0$

I eliminate to find $\displaystyle t_{2}=0.225t_{3} $ and $\displaystyle t_{1}=-0.0137t_{3}$

Thus the eigenvector is

t=$\displaystyle k (-0.0137, 0.225, 1)$

But the actual answer is given as (-0.0088, 0.216, 1).

Thanks for any pointers.