1. ## System of equations

Solve the system of equations:
$\displaystyle \left\{\begin{matrix} 2\sqrt[4]{\frac{x^4}{3}+4}=1+\sqrt{\frac{3}{2}.y^2}\\2\sqrt[4]{\frac{y^4}{3}+4}=1+\sqrt{\frac{3}{2}.x^2}\end{mat rix}\right.$
@@Help me my latex??

2. ## Re: System of equations

Originally Posted by leezangqe
Solve the system of equations:
$\displaystyle \left\{\begin{matrix} 2\sqrt[4]{\frac{x^4}{3}+4}=1+\sqrt{\frac{3}{2}.y^2}\\2\sqrt[4]{\frac{y^4}{3}+4}=1+\sqrt{\frac{3}{2}.x^}\end{matr ix}\right.$
@@Help me my latex??
Hi Leezangqe, are both equations correctly posted? Cause $\displaystyle \sqrt{\frac{3}{2}\times y^{2}}$ in the first equation could be $\displaystyle \sqrt{\frac{3}{2}}y$.

3. ## Re: System of equations

@kylehk
No, it is
$\displaystyle \sqrt{\frac{3}{2}\times y^{2}}$=$\displaystyle \sqrt{\frac{3}{2}}\left | y \right |$

4. ## Re: System of equations

Who can help me solve this problem? affordable it will be resolved by the inequality?

5. ## Re: System of equations

Originally Posted by leezangqe
Solve the system of equations:
$\displaystyle \left\{\begin{matrix} 2\sqrt[4]{\frac{x^4}{3}+4}=1+\sqrt{\frac{3}{2}.y^2}\\2\sqrt[4]{\frac{y^4}{3}+4}=1+\sqrt{\frac{3}{2}.x^2}\end{mat rix}\right.$
@@Help me my latex??
first thoughts:
As the equations are cyclic, maybe it would help to solve $\displaystyle 2\sqrt[4]{\frac{x^4}{3}+4}=1+\sqrt{\frac{3}{2}}x$ first, because my best guess is that it will work for $\displaystyle x=y$.
Would be great if anybody solves this equation...