Results 1 to 4 of 4
Like Tree2Thanks
  • 1 Post By Plato
  • 1 Post By earthboy

Math Help - Inequalities triangle

  1. #1
    Newbie
    Joined
    Jan 2013
    From
    China
    Posts
    23

    Inequalities triangle

    Prove that in any triangle ABC:
    $\sqrt{(\tan \frac{A}{2} + \tan \frac{B}{2})(\tan \frac{B}{2}+\tan \frac{C}{2})} + \sqrt{(\tan \frac{B}{2} + \tan \frac{C}{2})(\tan \frac{C}{2}+\tan \frac{A}{2})}+ \sqrt{(\tan \frac{C}{2} + \tan \frac{A}{2})(\tan \frac{A}{2}+\tan \frac{B}{2})} \leq 2(\cot A + \cot B + \cot C)$
    Last edited by leezangqe; January 26th 2013 at 04:10 AM.
    Follow Math Help Forum on Facebook and Google+

  2. #2
    MHF Contributor

    Joined
    Aug 2006
    Posts
    18,966
    Thanks
    1785
    Awards
    1

    Re: Inequalities triangle

    Quote Originally Posted by leezangqe View Post
    Prove that in any triangle ABC:
    \sqrt{(\tan \frac{A}{2} + \tan \frac{B}{2})(\tan \frac{B}{2}+\tan \frac{C}{2})} + \sqrt{(\tan \frac{B}{2} + \tan \frac{C}{2})(\tan \frac{C}{2}+\tan \frac{A}{2})}+ \sqrt{(\tan \frac{C}{2} + \tan \frac{A}{2})(\tan \frac{A}{2}+\tan \frac{B}{2})} \leq 2(\cot A + \cot B + \cot C)
    .............
    Thanks from leezangqe
    Follow Math Help Forum on Facebook and Google+

  3. #3
    Newbie
    Joined
    Jan 2013
    From
    China
    Posts
    23

    Re: Inequalities triangle

    Thank you help me latex, i try but i have this problem
    Follow Math Help Forum on Facebook and Google+

  4. #4
    Member
    Joined
    Feb 2010
    From
    in the 4th dimension....
    Posts
    122
    Thanks
    9

    Re: Inequalities triangle

    Quote Originally Posted by leezangqe View Post
    Prove that in any triangle ABC:
    $ \sqrt{(\tan \frac{A}{2} + \tan \frac{B}{2})(\tan \frac{B}{2}+\tan \frac{C}{2})} + \sqrt{(\tan \frac{B}{2} + \tan \frac{C}{2})(\tan \frac{C}{2}+\tan \frac{A}{2})}+ \sqrt{(\tan \frac{C}{2} + \tan \frac{A}{2})(\tan \frac{A}{2}+\tan \frac{B}{2})} \leq 2(\cot A + \cot B + \cot C)$
    @leezangqe:select your whole latex code and click the summation symbol on the bar.
    we know that A+B+B=180
    lets start with the left side of the inequality:
    \cot A+\cot B=\frac{\cos A}{\sin A}+\frac{\cos B}{\sin B}=\frac{\sin (A+B)}{\sin A \sin B}=\frac{2\sin C}{\cos (A-B)+\cos C}
    (# as \sin (A+B)=\sin C in a triangle, and using product-sum formula)
    now, \frac{2\sin C}{\cos (A-B)+\cos C} \geq \frac{2\sin C}{1+\cos C}=2\tan \frac{C}{2}
    so similarly we can write,
    \cot A+\cot B \geq 2\tan \frac{C}{2}
    \cot B+\cot C \geq 2\tan \frac{A}{2}
    \cot C+\cot A \geq 2\tan \frac{B}{2}
    Adding these together we get,
    2(\cot A + \cot B + \cot C) \geq 2(\tan \frac{A}{2}+\tan \frac{B}{2}+\tan \frac{C}{2}) ..................(i)
    now lets simplify the right side:
    by the AM-GM inequality we can write:
    \sqrt{(\tan \frac{A}{2} + \tan \frac{B}{2})(\tan \frac{B}{2}+\tan \frac{C}{2})} \geq \frac{\tan \frac{A}{2}+\tan \frac{B}{2}+\tan \frac{B}{2}+\tan \frac{C}{2}}{2}
    or, similarly,
    \sqrt{(\tan \frac{A}{2} + \tan \frac{B}{2})(\tan \frac{B}{2}+\tan \frac{C}{2})} \geq \frac{\tan \frac{A}{2}+2\tan \frac{B}{2}+\tan \frac{C}{2}}{2}
    \sqrt{(\tan \frac{B}{2} + \tan \frac{C}{2})(\tan \frac{C}{2}+\tan \frac{A}{2})} \geq \frac{\tan \frac{A}{2}+2\tan \frac{C}{2}+\tan \frac{B}{2}}{2}
    \sqrt{(\tan \frac{C}{2} + \tan \frac{A}{2})(\tan \frac{A}{2}+\tan \frac{B}{2})} \geq \frac{\tan \frac{B}{2}+2\tan \frac{A}{2}+\tan \frac{C}{2}}{2}
    adding these we get,
    \sqrt{(\tan \frac{A}{2} + \tan \frac{B}{2})(\tan \frac{B}{2}+\tan \frac{C}{2})} + \sqrt{(\tan \frac{B}{2} + \tan \frac{C}{2})(\tan \frac{C}{2}+\tan \frac{A}{2})}+ \sqrt{(\tan \frac{C}{2} + \tan \frac{A}{2})(\tan \frac{A}{2}+\tan \frac{B}{2})} \leq 2(\tan \frac{A}{2}+\tan \frac{B}{2}+\tan \frac{C}{2}) \leq 2(\cot A + \cot B + \cot C) from (i)


    proved
    Thanks from leezangqe
    Follow Math Help Forum on Facebook and Google+

Similar Math Help Forum Discussions

  1. Replies: 3
    Last Post: April 30th 2009, 08:41 AM
  2. Real Analysis: proving the triangle inequalities
    Posted in the Pre-Calculus Forum
    Replies: 2
    Last Post: January 17th 2009, 10:54 PM
  3. Replies: 4
    Last Post: November 24th 2008, 11:50 AM
  4. Replies: 1
    Last Post: October 28th 2008, 08:02 PM
  5. Replies: 27
    Last Post: April 27th 2008, 11:36 AM

Search Tags


/mathhelpforum @mathhelpforum