# Inequalities triangle

• Jan 26th 2013, 03:04 AM
leezangqe
Inequalities triangle
Prove that in any triangle ABC:
$\sqrt{(\tan \frac{A}{2} + \tan \frac{B}{2})(\tan \frac{B}{2}+\tan \frac{C}{2})} + \sqrt{(\tan \frac{B}{2} + \tan \frac{C}{2})(\tan \frac{C}{2}+\tan \frac{A}{2})}+ \sqrt{(\tan \frac{C}{2} + \tan \frac{A}{2})(\tan \frac{A}{2}+\tan \frac{B}{2})} \leq 2(\cot A + \cot B + \cot C)$
• Jan 26th 2013, 03:56 AM
Plato
Re: Inequalities triangle
Quote:

Originally Posted by leezangqe
Prove that in any triangle ABC:
$\sqrt{(\tan \frac{A}{2} + \tan \frac{B}{2})(\tan \frac{B}{2}+\tan \frac{C}{2})} + \sqrt{(\tan \frac{B}{2} + \tan \frac{C}{2})(\tan \frac{C}{2}+\tan \frac{A}{2})}+ \sqrt{(\tan \frac{C}{2} + \tan \frac{A}{2})(\tan \frac{A}{2}+\tan \frac{B}{2})} \leq 2(\cot A + \cot B + \cot C)$

.............
• Jan 26th 2013, 07:22 AM
leezangqe
Re: Inequalities triangle
Thank you help me latex, i try but i have this problem
• Jan 26th 2013, 10:07 PM
earthboy
Re: Inequalities triangle
Quote:

Originally Posted by leezangqe
Prove that in any triangle ABC:
\$ $\sqrt{(\tan \frac{A}{2} + \tan \frac{B}{2})(\tan \frac{B}{2}+\tan \frac{C}{2})} + \sqrt{(\tan \frac{B}{2} + \tan \frac{C}{2})(\tan \frac{C}{2}+\tan \frac{A}{2})}+ \sqrt{(\tan \frac{C}{2} + \tan \frac{A}{2})(\tan \frac{A}{2}+\tan \frac{B}{2})} \leq 2(\cot A + \cot B + \cot C)$

@leezangqe:select your whole latex code and click the summation symbol on the bar.
we know that $A+B+B=180$
$\cot A+\cot B=\frac{\cos A}{\sin A}+\frac{\cos B}{\sin B}=\frac{\sin (A+B)}{\sin A \sin B}=\frac{2\sin C}{\cos (A-B)+\cos C}$
(# as $\sin (A+B)=\sin C$ in a triangle, and using product-sum formula)
now, $\frac{2\sin C}{\cos (A-B)+\cos C} \geq \frac{2\sin C}{1+\cos C}=2\tan \frac{C}{2}$
so similarly we can write,
$\cot A+\cot B \geq 2\tan \frac{C}{2}$
$\cot B+\cot C \geq 2\tan \frac{A}{2}$
$\cot C+\cot A \geq 2\tan \frac{B}{2}$
$2(\cot A + \cot B + \cot C) \geq 2(\tan \frac{A}{2}+\tan \frac{B}{2}+\tan \frac{C}{2}) ..................(i)$
$\sqrt{(\tan \frac{A}{2} + \tan \frac{B}{2})(\tan \frac{B}{2}+\tan \frac{C}{2})} \geq \frac{\tan \frac{A}{2}+\tan \frac{B}{2}+\tan \frac{B}{2}+\tan \frac{C}{2}}{2}$
$\sqrt{(\tan \frac{A}{2} + \tan \frac{B}{2})(\tan \frac{B}{2}+\tan \frac{C}{2})} \geq \frac{\tan \frac{A}{2}+2\tan \frac{B}{2}+\tan \frac{C}{2}}{2}$
$\sqrt{(\tan \frac{B}{2} + \tan \frac{C}{2})(\tan \frac{C}{2}+\tan \frac{A}{2})} \geq \frac{\tan \frac{A}{2}+2\tan \frac{C}{2}+\tan \frac{B}{2}}{2}$
$\sqrt{(\tan \frac{C}{2} + \tan \frac{A}{2})(\tan \frac{A}{2}+\tan \frac{B}{2})} \geq \frac{\tan \frac{B}{2}+2\tan \frac{A}{2}+\tan \frac{C}{2}}{2}$
$\sqrt{(\tan \frac{A}{2} + \tan \frac{B}{2})(\tan \frac{B}{2}+\tan \frac{C}{2})} + \sqrt{(\tan \frac{B}{2} + \tan \frac{C}{2})(\tan \frac{C}{2}+\tan \frac{A}{2})}+ \sqrt{(\tan \frac{C}{2} + \tan \frac{A}{2})(\tan \frac{A}{2}+\tan \frac{B}{2})} \leq 2(\tan \frac{A}{2}+\tan \frac{B}{2}+\tan \frac{C}{2}) \leq 2(\cot A + \cot B + \cot C)$from $(i)$