solve for x^2 - mx - 5 whose sum of roots is 6. find m.

can any body help me on this ?

thanks

Results 1 to 6 of 6

- Jan 21st 2013, 05:09 AM #1

- Jan 21st 2013, 05:28 AM #2

- Jan 21st 2013, 06:35 AM #3

- Jan 21st 2013, 01:59 PM #4

- Jan 21st 2013, 02:49 PM #5

- Joined
- May 2006
- From
- Lexington, MA (USA)
- Posts
- 12,028
- Thanks
- 849

## Re: value of m

Hello, rcs!

$\displaystyle \text{The sum of roots of }\,x^2 - mx - 5\:=\:0\,\text{ is 6. Find }m.$

Suppose the two roots are $\displaystyle p$ and $\displaystyle q$.

Vieta's formulas tell us: .$\displaystyle p+q \:=\:m,\quad pq \:=\:-5$

. . Therefore: .$\displaystyle m \,=\,6$

~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~

The equation becomes: .$\displaystyle x^2 - 6x - 5 \:=\:0$

Quadratic Formula: .$\displaystyle x \;=\;\frac{6 \pm\sqrt{36+20}}{2} \;=\;3 \pm\sqrt{14} $

Hence: .$\displaystyle \begin{Bmatrix}p &=& 3 + \sqrt{14} \\ q &=& 3 - \sqrt{14}\end{Bmatrix}$

Check:

$\displaystyle p+q \;=\;(3+\sqrt{14}) + (3 - \sqrt{14}) \;=\;6\;\;\checkmark $

$\displaystyle pq \;=\;(3 + \sqrt{14})(3-\sqrt{14}) \;=\;9 - 14 \;=\;-5\;\;\checkmark $

- Jan 21st 2013, 09:32 PM #6