should be easy(for you):

$\displaystyle \frac{8}{27}(\frac{9}{4}x-\frac{5}{4})^\frac{3}{2}$

becomes

$\displaystyle \frac{1}{27}(9x-5)^\frac{3}{2}$

through what operations?

Printable View

- Nov 19th 2012, 07:38 AMGreymalkinExponent simplification
should be easy(for you):

$\displaystyle \frac{8}{27}(\frac{9}{4}x-\frac{5}{4})^\frac{3}{2}$

becomes

$\displaystyle \frac{1}{27}(9x-5)^\frac{3}{2}$

through what operations? - Nov 19th 2012, 07:47 AMProve ItRe: Exponent simplification
$\displaystyle \displaystyle \begin{align*} \frac{8}{27} \left( \frac{9}{4} \, x - \frac{5}{4} \right) ^{\frac{3}{2}} &= \frac{8}{27} \left( \frac{9x - 5}{4} \right)^{\frac{3}{2}} \\ &= \frac{8}{27} \frac{\left( 9x - 5 \right)^{\frac{3}{2}}}{4^{\frac{3}{2}}} \\ &= \frac{8}{27} \frac{\left( 9x - 5 \right)^{\frac{3}{2}}}{\left( 4^{\frac{1}{2}} \right)^3} \\ &= \frac{8}{27} \frac{\left( 9x - 5 \right)^{\frac{3}{2}}}{2^3} \\ &= \frac{8}{27} \frac{\left( 9x - 5 \right)^{\frac{3}{2}}}{8} \\ &= \frac{1}{27} \left( 9x - 5 \right)^{\frac{3}{2}} \end{align*}$

- Nov 19th 2012, 07:52 AMRBowmanRe: Exponent simplification
Hi Grey.

8/27 * (9/4 x - 5/4) ^ 3/2 =

8/27 * [1/4 (9 x - 5)] ^ 3/2 =

8/27 * (1/4) ^ 3/2 * (9 x - 5) ^ 3/2 =

8/27 * 1/8 * (9 x - 5) ^ 3/2 =

1/27 * (9 x - 5) ^ 3/2.

Hope that helps. I'll learn to typeface soon. I'm still new to the forum. - Nov 19th 2012, 07:57 AMProve ItRe: Exponent simplification
- Nov 19th 2012, 08:02 AMRBowmanRe: Exponent simplification
I am a bit jealous. You wanna help by pointing me to best thread in the forum for users getting started with LaTeX? I'm also slow when it comes to finding things on my own. :)

- Nov 19th 2012, 08:03 AMProve ItRe: Exponent simplification
Look in the LaTeX help subforum on this site.

- Nov 19th 2012, 08:04 AMRBowmanRe: Exponent simplification
Found it. Thanks Prove It.