Hi I really do not know how to do this.
Write sin2a-cos2ai in modulus argument form
I was thinking of changing sin2a to cos(pi/2 - 2a)..
Will really appreciate the help! Thanks,
J.
Notice this is in the Cartesian Form $\displaystyle \displaystyle \begin{align*} x + y\,i \end{align*}$ with $\displaystyle \displaystyle \begin{align*} x = \sin{(2a)} \end{align*}$ and $\displaystyle \displaystyle \begin{align*} y = \cos{(2a)} \end{align*}$. You need to write it in the modulus-argument form $\displaystyle \displaystyle \begin{align*} r\, e^{i\,\theta} \end{align*}$ with $\displaystyle \displaystyle \begin{align*} r = \sqrt{x^2 + y^2} \end{align*}$ and $\displaystyle \displaystyle \begin{align*} \theta = \arctan{\left( \frac{y}{x} \right)} \end{align*}$.
From what I've learnt, modulus-argument form is the polar form where it is rcis(thetha) where r is positive.
re^i(thetha) is exponential form for me.
The answer of this question is in cis form, not exponential form.
You already have x and y. Evaluate $\displaystyle \displaystyle \begin{align*} r = \sqrt{x^2 + y^2} \end{align*}$ and $\displaystyle \displaystyle \begin{align*} \theta = \arctan{\left( \frac{y}{x} \right)} \end{align*}$.