Results 1 to 7 of 7

Math Help - Algebra problem (from lang's basic mathematics)

  1. #1
    Newbie
    Joined
    Oct 2012
    From
    Nederland
    Posts
    3

    Question Algebra problem (from lang's basic mathematics)

    Hello everyone,

    I've recently decided to try and brush up on my math by self-studying Lang's basic mathematics. There's an exercise there which reads: "Justify each step, using commutativity and associativity in proving the following identities". I've solved 8/10 problems but the last two I can't seem to figure out:

    9. (X - Y) - (Z -W) = (X + W) - Y -Z

    and:

    10. (X - Y) - (Z -W) = (X - Z) + (W - Y)

    Before the problems you're given the principle of commutativity and associativity, as well as the identity: "-(A + B) = - A - B", which I assume are all relevant in solving these problems.


    If I replace all the variables with numbers I can see clearly that they are identical, for some reason however I cannot translate that into a series of abstract steps that proves that these are identical. Any help would be greatly appreciated!
    Follow Math Help Forum on Facebook and Google+

  2. #2
    Super Member
    Joined
    Sep 2012
    From
    Washington DC USA
    Posts
    525
    Thanks
    146

    Re: Algebra problem (from lang's basic mathematics)

    #9 (X - Y) - (Z -W) = (X + W) - Y -Z

    First: (X - Y) - (Z -W) = (X - Y) + ( -Z + W )
    Uses: Associative & Distributive Laws and, repeatedly, that P + (-1)Q = P - Q (call that fact *).

    (X - Y) - (Z -W)
    = (X - Y) + (-1)(Z + (-1)W)............................(*) and (*)
    = (X - Y) + ( (-1)(Z) + (-1)[(-1)(W)] ).............Distributive Law
    = (X - Y) + ( -Z + [(-1)(-1)](W) )....................(*) and Associative Law (for Multiplication)
    = (X - Y) + ( -Z + [1](W) ).............................Arithmetic: (-1)(-1) = 1
    = (X - Y) + ( -Z + W )....................................1 is the unit for multiplcation

    Second: (X - Y) + ( -Z + W ) = (X + W) - Y -Z
    Uses: The above, the Laws, and the identity: -( Y + Z ) = -Y - Z

    (X - Y) + ( -Z + W )
    = (X - Y) + ( W - Z ).......................................Commutativ e Law (for addition)
    = (X + (-1)Y) + ( W + (-1)Z )..........................(*) and (*)
    = [ (X + (-1)Y) + (W) ] + (-1)Z........................Associative Law (for addition), treating (X + (-1)Y) as a single value.
    = [ X + ( (-1)Y + W ) ] + (-1)Z........................Associative Law (for addition).
    = [ X + ( W + (-1)Y ) ] + (-1)Z........................Commutative Law (for addition).
    = [ ( X + W ) + ( (-1)Y ) ] + (-1)Z....................Associative Law (for addition).
    = ( X + W ) + [ (-1)Y + (-1)Z ]........................Associative Law (for addition), treating (X+W) as a single value.
    = ( X + W ) + (-1)[ Y + Z ].............................Distributive Law.
    = ( X + W ) - ( Y + Z )....................................(*)
    = ( X + W ) - Y - Z.........................................Given identity.
    Last edited by johnsomeone; October 20th 2012 at 06:01 AM.
    Follow Math Help Forum on Facebook and Google+

  3. #3
    Super Member
    Joined
    Nov 2007
    From
    Trumbull Ct
    Posts
    903
    Thanks
    27

    Re: Algebra problem (from lang's basic mathematics)

    Back in 1930 the rule was "When removing brackets preceded by a minus sign change the signsof the terms within the brackets" There is a 1 understood after the minus so -1 must be multiplied by each term
    Last edited by bjhopper; October 20th 2012 at 06:16 AM.
    Follow Math Help Forum on Facebook and Google+

  4. #4
    Newbie
    Joined
    Oct 2012
    From
    Nederland
    Posts
    3

    Re: Algebra problem (from lang's basic mathematics)

    Thank you very much both. It wasn't explained that you could do that; once you point it out it seems obvious though. I'm glad it wasn't such a simple solution as I thought it would be, because I felt quite stupid to get stuck in the first chapter like that

    Going to try to apply this to problem 10.
    Follow Math Help Forum on Facebook and Google+

  5. #5
    Newbie
    Joined
    Oct 2012
    From
    Nederland
    Posts
    3

    Re: Algebra problem (from lang's basic mathematics)

    10. (X - Y) - (Z -W) = (X - Z) + (W - Y):


    (X - Y) - (Z -W)
    = (X - Y) + (-1)(Z + (-1)W)............................(*) and (*)
    = (X - Y) + ( (-1)(Z) + (-1)[(-1)(W)] ).............Distributive Law
    = (X - Y) + ( -Z + [(-1)(-1)](W) )....................(*) and Associative Law (for Multiplication)
    = (X - Y) + ( -Z + [1](W) ).............................Arithmetic: (-1)(-1) = 1
    = (X - Y) + ( -Z + W )....................................1 is the unit for multiplication
    = (X - Y) + ( W - Z ).......................................Commutativ e Law (for addition)
    ...........................................
    = (X - Z) + ( W - Y )....................................... Multiple instances of Commutative Law (for addition) to shuffle around the variables in the right order


    I think this would be correct then.
    Follow Math Help Forum on Facebook and Google+

  6. #6
    Super Member
    Joined
    Sep 2012
    From
    Washington DC USA
    Posts
    525
    Thanks
    146

    Re: Algebra problem (from lang's basic mathematics)

    Quote Originally Posted by tvd89 View Post
    I'm glad it wasn't such a simple solution as I thought it would be, because I felt quite stupid to get stuck in the first chapter like that
    The main idea is straight forward. A great deal of the work in that derivation was futzing with the minus signs. Had it been all plus, it would have be much shorter, and looked like this:

    #9Alternate: (X + Y) + (Z + W) = (X + W) + ( Y + Z )

    (X + Y) + (Z + W)
    = (X + Y) + ( W + Z ).....................................Commutative Law (for addition)
    = [ (X + Y) + W ] + Z.....................................Associative Law (for addition), treating (X + Y) as a single value.
    = [ X + ( Y + W ) ] + Z...................................Associative Law (for addition).
    = [ X + ( W + Y ) ] + Z...................................Commutative Law (for addition).
    = [ ( X + W ) + Y ] + Z...................................Associative Law (for addition).
    = ( X + W ) + ( Y + Z )...................................Associative Law (for addition), treating (X+W) as a single value.
    Last edited by johnsomeone; October 20th 2012 at 08:19 AM.
    Follow Math Help Forum on Facebook and Google+

  7. #7
    Super Member
    Joined
    Sep 2012
    From
    Washington DC USA
    Posts
    525
    Thanks
    146

    Re: Algebra problem (from lang's basic mathematics)

    Re: Your #10:
    That looks good up to "1 is the unit for multiplication". Your next step, using the commutative law, isn't wrong, but also isn't the most direct approach to your ultimate goal.
    Maybe try to work it out in detail from: (X - Y) + ( -Z + W ).
    In other words, show:
    (X - Y) + ( -Z + W ) = (X - Z) + (W - Y).
    Follow Math Help Forum on Facebook and Google+

Similar Math Help Forum Discussions

  1. Replies: 1
    Last Post: August 16th 2012, 11:24 PM
  2. Basic algebra problem
    Posted in the Algebra Forum
    Replies: 2
    Last Post: June 3rd 2012, 04:32 PM
  3. Replies: 1
    Last Post: September 16th 2011, 01:22 PM
  4. The Mathematics in BlackJack Basic Strategy
    Posted in the Statistics Forum
    Replies: 18
    Last Post: May 23rd 2010, 10:28 PM
  5. need help with basic algebra problem
    Posted in the Algebra Forum
    Replies: 2
    Last Post: February 19th 2009, 09:10 PM

Search Tags


/mathhelpforum @mathhelpforum