Can someone help me algebraically rearrange the compound interest formula in order to find r? A=P(1+r/n)^(nt) rearranged to r=?
$\displaystyle A = P\left(1 + \frac{r}{n}\right)^{nt}$
$\displaystyle \frac{A}{P} = \left(1 + \frac{r}{n}\right)^{nt}$
$\displaystyle \left(\frac{A}{P}\right)^{\frac{1}{nt}} = 1 + \frac{r}{n}$
$\displaystyle \left(\frac{A}{P} \right)^{\frac{1}{nt}} - 1 = \frac{r}{n}$
$\displaystyle n \left[\left(\frac{A}{P} \right)^{\frac{1}{nt}} - 1\right] = r$