Results 1 to 4 of 4
Like Tree1Thanks
  • 1 Post By Prove It

Math Help - find the range of values of x

  1. #1
    Super Member
    Joined
    Dec 2009
    Posts
    755

    find the range of values of x

    Find in terms of a, the range of x that satisfy the inequality ln(2x-\frac{a}{x})=>0

    2x-\frac{a}{x}=>1

    \frac{2x^2-x-a}{x}=>0
    Follow Math Help Forum on Facebook and Google+

  2. #2
    MHF Contributor
    Prove It's Avatar
    Joined
    Aug 2008
    Posts
    11,589
    Thanks
    1444

    Re: find the range of values of x

    Quote Originally Posted by Punch View Post
    Find in terms of a, the range of x that satisfy the inequality ln(2x-\frac{a}{x})=>0

    2x-\frac{a}{x}=>1

    \frac{2x^2-x-a}{x}=>0
    First of all, you need to note that a logarithm is only defined for positive values, so \displaystyle \begin{align*} 2x - \frac{a}{x} > 0 \end{align*}. This requires that both \displaystyle \begin{align*} 2x \end{align*} and \displaystyle \begin{align*} \frac{a}{x} \end{align*} are positive, which means \displaystyle \begin{align*} x \end{align*} and \displaystyle \begin{align*} a \end{align*} are also both positive. Then we have

    \displaystyle \begin{align*} 2x &> \frac{a}{x} \\ 2x^2 &> a  \textrm{ since we know } 2x > 0 \implies x > 0 \\ x^2 &> \frac{a}{2} \\ x &> \sqrt{\frac{a}{2}} \\ x &> \frac{\sqrt{a}}{\sqrt{2}} \\ x &> \frac{\sqrt{2a}}{2} \end{align*}

    Now solving the original inequality

    \displaystyle \begin{align*} \ln{\left(2x - \frac{a}{x}\right)} &\geq 0 \\ 2x - \frac{a}{x} &\geq 1 \\ \frac{2x^2 - x - a}{x} &\geq 0 \\ 2x^2 - x - a &\geq 0 \textrm{ since we already know } x > 0 \\ 2x^2 - x &\geq a \\ x^2 - \frac{1}{2}x &\geq \frac{a}{2} \\ x^2 - \frac{1}{2}x + \left(-\frac{1}{4}\right)^2 &\geq \frac{a}{2} + \left(-\frac{1}{4}\right)^2 \\ \left(x - \frac{1}{4}\right)^2 &\geq \frac{8a}{16} + \frac{1}{16} \\ \left(x - \frac{1}{4}\right)^2 &\geq \frac{8a + 1}{16} \\ \left| x - \frac{1}{4} \right| &\geq \frac{\sqrt{8a + 1}}{4} \\ x - \frac{1}{4} \leq -\frac{\sqrt{8a + 1}}{4} \textrm{ or } x - \frac{1}{4} &\geq \frac{\sqrt{8a + 1}}{4} \\ x \leq \frac{1 - \sqrt{8a + 1}}{4} \textrm{ or } x &\geq \frac{1 + \sqrt{8a + 1}}{4} \end{align*}


    So finally, the solution of this inequality is the intersection of these two sets...

    \displaystyle \begin{align*} x \in \left( \frac{\sqrt{2a}}{2} , \infty \right) \cap \left\{ \left(- \infty , \frac{1 - \sqrt{8a + 1}}{4} \right] \cup \left[ \frac{1 + \sqrt{8a + 1}}{4}, \infty \right)  \right\} \end{align*}
    Thanks from Punch
    Follow Math Help Forum on Facebook and Google+

  3. #3
    Super Member
    Joined
    Dec 2009
    Posts
    755

    Re: find the range of values of x

    I agree that 2x-\frac{a}{x}>0 but i do not agree that this requires both 2x and \frac{a}{x} to be positive.

    If I sub x=-0.5 and taking a=1, 2(-0.5)-\frac{1}{-0.5}=1>0
    Follow Math Help Forum on Facebook and Google+

  4. #4
    MHF Contributor
    Prove It's Avatar
    Joined
    Aug 2008
    Posts
    11,589
    Thanks
    1444

    Re: find the range of values of x

    Quote Originally Posted by Punch View Post
    I agree that 2x-\frac{a}{x}>0 but i do not agree that this requires both 2x and \frac{a}{x} to be positive.

    If I sub x=-0.5 and taking a=1, 2(-0.5)-\frac{1}{-0.5}=1>0
    I stand corrected.
    Follow Math Help Forum on Facebook and Google+

Similar Math Help Forum Discussions

  1. Replies: 1
    Last Post: June 1st 2011, 01:47 AM
  2. Find the range of values of x
    Posted in the Pre-Calculus Forum
    Replies: 3
    Last Post: May 7th 2011, 10:31 AM
  3. Find range of values
    Posted in the Pre-Calculus Forum
    Replies: 7
    Last Post: November 4th 2009, 07:19 PM
  4. Find range of positive values of x?
    Posted in the Algebra Forum
    Replies: 1
    Last Post: February 13th 2009, 10:42 PM
  5. range of values
    Posted in the Algebra Forum
    Replies: 1
    Last Post: December 18th 2008, 01:00 AM

Search Tags


/mathhelpforum @mathhelpforum