Results 1 to 6 of 6

Math Help - Why is it that you can't add/subtract polynomial exponents, but you can otherwise?

  1. #1
    Newbie
    Joined
    Aug 2012
    From
    Missouri City, Texas
    Posts
    23

    Why is it that you can't add/subtract polynomial exponents, but you can otherwise?

    For example, i'm not suppose to add 4x^3+6x^2. Why can't it be 8x^5? I thought if you are add like terms (x), then you can just add the exponents. Can someone explain this to me?
    Follow Math Help Forum on Facebook and Google+

  2. #2
    MHF Contributor

    Joined
    Aug 2006
    Posts
    18,793
    Thanks
    1688
    Awards
    1

    Re: Why is it that you can't add/subtract polynomial exponents, but you can otherwise

    Quote Originally Posted by EJdive43 View Post
    For example, i'm not suppose to add 4x^3+6x^2. Why can't it be 8x^5? I thought if you are add like terms (x), then you can just add the exponents. Can someone explain this to me?
    The term x^3 is totally different from x^2.
    Surely you have heard it said "you cannot add apples and oranges."

    Now 4x^3+6x^3=10x^3 BUT 4x^3+6x^2 cannot be simplified.

    It can be factored, 4x^3+6x^2,x^2(4x+6) but not combined.
    Follow Math Help Forum on Facebook and Google+

  3. #3
    MHF Contributor
    Joined
    Oct 2009
    Posts
    5,545
    Thanks
    780

    Re: Why is it that you can't add/subtract polynomial exponents, but you can otherwise

    Quote Originally Posted by EJdive43 View Post
    For example, i'm not suppose to add 4x^3+6x^2. Why can't it be 8x^5?
    If anything, why 8 and not 10 (4 + 6)? We don't accept this equality because it does not have a proof. After all, I can suggest using all kinds of laws, but it is my task to prove that they are true. Moreover, this equality has a counterexample, say, x = 2.
    Follow Math Help Forum on Facebook and Google+

  4. #4
    MHF Contributor ebaines's Avatar
    Joined
    Jun 2008
    From
    Illinois
    Posts
    1,113
    Thanks
    325

    Re: Why is it that you can't add/subtract polynomial exponents, but you can otherwise

    You can see that 4x^3 + 6x^3 is not 8x^5 (or 10x^5, which is what I think you probably meant to write) by trying a value or two for x. For example if x=2 then 4x^2 + 6x^3 = 4(2)^2 + 6(2)^3 = 64, which does not equal 8(2)^5 = 256. Asking why they aren't equal is like asking why 2+2 isn't 17. One thought that might help is to think of the exponent as defining a dimension, so that x^3 is equivalent to a 3-dimensional cube and x^2 is equivalent to a 2-dimensional square. You can add cubes together - for example 3 cubes plus 4 cubes = 7 cubes, so 3x^3 + 4x^3 = 7x^3. Or you can add squares together (3 squares + 4 squares = 7 squares), but you can't add squares to cubes.
    Follow Math Help Forum on Facebook and Google+

  5. #5
    Newbie
    Joined
    Aug 2012
    From
    Missouri City, Texas
    Posts
    23

    Re: Why is it that you can't add/subtract polynomial exponents, but you can otherwise

    Thanks guys!
    Follow Math Help Forum on Facebook and Google+

  6. #6
    MHF Contributor

    Joined
    Mar 2011
    From
    Tejas
    Posts
    3,401
    Thanks
    762

    Re: Why is it that you can't add/subtract polynomial exponents, but you can otherwise

    what you are asking, is:

    why isn't xa + xb = xa+b?

    well, let's look at some specific values for a, and b. let's pick a = 1, and b = 2 (i like small numbers).

    so, we want to see why:

    x + x2 ≠ x3.

    now we could just "plug in" various values for x, and see what happens. but since we're doing algebra, let's let the rules of algebra do the heavy lifting (never compute, if you can avoid it, i always say).

    let's play "devil's advocate" and pretend that the two sides ARE equal (like we hope they are).

    recall that x2 = x*x, and x3 = x*x*x.

    what we're going to do, is "factor an x out of each side":

    x(1 + x) = ? x(x2)

    with me so far? now, if x = 0, it certainly is true that 0 + 0 = 0, but that's kind of...boring...so let's look at any other x. and hey! if x isn't 0, we can "divide it out":

    1 + x = x2

    we can also subtract x from both sides, that's always fair:

    1 = x2 - x.

    let's "factor out another x" on the right:

    1 = x(x - 1).

    hmm. can you see why x can't be an integer? if it was, then x - 1 would also be an integer, so x(x-1) would have to be either 1*1, or -1*-1, and x and x-1 can't be the same integer.

    but if it doesn't work for integers, then how can it possibly work "for all x"?

    **************

    we could go the other way, and suppose "x" is a specific number, like 2:

    could it be that:

    2a + 2b = 2a+b, for any a and b? again, we let a = 1, b = 2:

    21 + 22 = ? 23

    2 + 4 =? 8

    6 =? 8, no, it doesn't look like that works.

    *************

    naively, you can think of polynomials as being like integers, only "in base x", instead of "base 10". we don't add the tens place to the hundreds place, so why should we lump x2 in with the x3?
    Follow Math Help Forum on Facebook and Google+

Similar Math Help Forum Discussions

  1. I can't Subtract!
    Posted in the Algebra Forum
    Replies: 4
    Last Post: October 8th 2011, 10:19 AM
  2. Replies: 2
    Last Post: November 1st 2009, 04:45 PM
  3. subtract fractions
    Posted in the Algebra Forum
    Replies: 1
    Last Post: May 9th 2008, 08:00 AM
  4. subtract
    Posted in the Algebra Forum
    Replies: 3
    Last Post: September 4th 2007, 01:55 PM
  5. subtract fractions
    Posted in the Algebra Forum
    Replies: 6
    Last Post: March 15th 2007, 08:19 AM

Search Tags


/mathhelpforum @mathhelpforum