Results 1 to 6 of 6

Math Help - Quadratic equation

  1. #1
    Newbie
    Joined
    Jun 2012
    From
    Birmingham
    Posts
    4

    Quadratic equation

    Let r and s be the roots of the quadratic x2 + bx + c where b and c are constant, if (r-1)(s-1) = 7 find b + c
    Follow Math Help Forum on Facebook and Google+

  2. #2
    MHF Contributor
    Prove It's Avatar
    Joined
    Aug 2008
    Posts
    11,318
    Thanks
    1234

    Re: Quadratic equation

    Quote Originally Posted by mgmanoj View Post
    Let r and s be the roots of the quadratic x2 + bx + c where b and c are constant, if (r-1)(s-1) = 7 find b + c
    \displaystyle \begin{align*} x^2 + b\,x + c &= 0 \\ x^2 + b\,x + \left(\frac{b}{2}\right)^2 - \left(\frac{b}{2}\right)^2 + c &= 0 \\ \left(x + \frac{b}{2}\right)^2 - \frac{b^2}{4} + \frac{4c}{4} &= 0 \\ \left(x + \frac{b}{2}\right)^2 + \frac{4c - b^2}{4} &= 0 \\ \left(x + \frac{b}{2}\right)^2 &= \frac{b^2 - 4c}{4} \\ x + \frac{b}{2} &= \frac{\pm \sqrt{b^2 - 4c}}{2} \\ x &= \frac{-b \pm \sqrt{b^2 - 4c}}{2}  \end{align*}


    So we can say \displaystyle \begin{align*} r = \frac{-b - \sqrt{b^2 - 4c}}{2} \end{align*} and \displaystyle \begin{align*} s = \frac{-b + \sqrt{b^2 - 4c}}{2} \end{align*}. Since we know \displaystyle \begin{align*} (r - 1)(s - 1) = 7 \end{align*}, we can say

    \displaystyle \begin{align*} \left(\frac{-b - \sqrt{b^2 - 4c}}{2} - 1\right)\left(\frac{-b + \sqrt{b^2 - 4c}}{2} - 1\right) &= 7 \\ \left(\frac{-b - 2 - \sqrt{b^2 - 4c}}{2}\right)\left(\frac{-b - 2 + \sqrt{b^2 - 4c}}{2}\right) &= 7 \\ \frac{\left(- b - 2 - \sqrt{b^2 - 4c} \right) \left( - b - 2 + \sqrt{b^2 - 4c} \right) }{4} &= 7 \\ \left(-b-2 - \sqrt{b^2 - 4c}\right)\left(-b-2 + \sqrt{b^2 - 4c}\right) &= 28 \\ \left(- b - 2\right)^2 - \left(b^2 - 4c \right) &= 28 \\ b^2 + 4b + 4 - b^2 + 4c &= 28 \\ 4b + 4c &= 24 \\ 4(b + c) &= 24 \\ b + c &= 6 \end{align*}
    Follow Math Help Forum on Facebook and Google+

  3. #3
    Newbie
    Joined
    Jun 2012
    From
    Birmingham
    Posts
    4

    Re: Quadratic equation

    Thanks - I was half way down to the problem - but did not substitute - this confirms my theory. Thanks again.
    Follow Math Help Forum on Facebook and Google+

  4. #4
    Super Member

    Joined
    May 2006
    From
    Lexington, MA (USA)
    Posts
    11,659
    Thanks
    600

    Re: Quadratic equation

    Hello, mgmanoj!

    \text{Let }r\text{ and }s\text{ be the roots of the quadratic: }\: x^2+\,bx\,+\,c\,\text{ where }b\text{ and }c\text{ are constants.}
    \text{If }\,(r-1)(s-1) \:=\: 7,\,\text{ find }b + c.

    \text{Since }r\text{ and }s\text{ are roots: }\:\begin{Bmatrix}r + s &=& \text{-}b \\ rs &=& c \end{Bmatrix} \;\;{\color{blue}[1]}

    \text{Given: }\:(r-1)(s-1) \:=\:7 \quad\Rightarrow\quad rs - r - s + 1 \:=\:7 \quad\Rightarrow\quad rs - (r+s) \:=\:6


    \text{Substitute }{\color{blue}[1]}\!:\;c - (\text{-}b) \:=\:6 \quad\Rightarrow\quad b +c \:=\:6
    Follow Math Help Forum on Facebook and Google+

  5. #5
    Super Member
    Joined
    Jun 2012
    From
    AZ
    Posts
    616
    Thanks
    97

    Re: Quadratic equation

    I second Soroban's solution...always helps to look at the sum and product of the roots of the quadratic.
    Follow Math Help Forum on Facebook and Google+

  6. #6
    MHF Contributor
    Joined
    Dec 2007
    From
    Ottawa, Canada
    Posts
    3,080
    Thanks
    66

    Re: Quadratic equation

    Quote Originally Posted by richard1234 View Post
    I second Soroban's solution...always helps to look at the sum and product of the roots of the quadratic.
    I third it !
    Follow Math Help Forum on Facebook and Google+

Similar Math Help Forum Discussions

  1. quadratic equation
    Posted in the Algebra Forum
    Replies: 2
    Last Post: June 6th 2010, 07:35 PM
  2. quadratic equation
    Posted in the Algebra Forum
    Replies: 5
    Last Post: June 5th 2010, 06:21 PM
  3. Replies: 3
    Last Post: April 25th 2010, 03:53 PM
  4. Quadratic equation - help
    Posted in the Algebra Forum
    Replies: 2
    Last Post: March 13th 2010, 03:46 PM
  5. quadratic equation
    Posted in the Algebra Forum
    Replies: 4
    Last Post: October 1st 2009, 10:28 PM

Search Tags


/mathhelpforum @mathhelpforum