Results 1 to 2 of 2

Math Help - Algeb

  1. #1
    Member srirahulan's Avatar
    Joined
    Apr 2012
    From
    Srilanka
    Posts
    173

    Post Algeb

    a_1b^2_2c_1=a_2b^2_1c_2This is given.and then If the roots of a_1x^2+b_1x+c_1=0 are \alpha_1,\beta_1and the roots of a_2x^2+b_2x+c_2=0are \alpha_2,\beta_2Then prove \frac {\alpha_1} {\beta_1}=\frac {\alpha_2}{\beta_2}\ \mbox{or}\ \frac {\alpha_1} {\beta_1}=\frac{\beta_2}{\alpha_2}
    Follow Math Help Forum on Facebook and Google+

  2. #2
    Member Sylvia104's Avatar
    Joined
    Mar 2012
    From
    London, UK
    Posts
    107
    Thanks
    37

    Re: Algeb

    a_1b_2^2c_1=a_2b_1^2c_2 \implies \frac{b_1^2}{a_1c_1}=\frac{b_2^2}{a_2c_2}.

    Now

    \left(\alpha_1+\beta_1\right)^2 = \alpha_1^2+\beta_1^2+2\alpha_1\beta_1 = \frac{b_1^2}{a_1^2}.

    \alpha_1\beta_1 = \frac{c_1}{a_1}.

    \therefore\ \frac{b_1^2}{a_1c_1} = \frac{\alpha_1^2 + \beta_1^2 + 2\alpha_1\beta_1}{\alpha_1\beta_1}.

    Similarly \frac{b_2^2}{a_2c_2} = \frac{\alpha_2^2 + \beta_2^2 + 2\alpha_2\beta_2}{\alpha_2\beta_2}.

    \therefore\ \frac{\alpha_1^2+\beta_1^2+2\alpha_1\beta_1}{\alph  a_1\beta_1} = \frac{\alpha^2 + \beta^2 + 2\alpha_2\beta_2}{\alpha_2\beta_2}

    \Rightarrow\ \alpha_1^2\alpha_2\beta_2 + \alpha_2\beta_1^2\beta_2 + 2\alpha_1\beta_1\alpha_2\beta_2 = \alpha_1\alpha^2\beta_1 + \alpha_1\beta_1\beta^2 + 2\alpha_1\beta_1\alpha_2\beta_2

    \Rightarrow\ \alpha_1^2\alpha_2\beta_2 - \alpha_1\beta_1\beta^2 - \alpha_1\alpha^2\beta_1 + \alpha_2\beta_1^2\beta_2 = 0

    \Rightarrow\ \left( \alpha_1\beta_2 - \alpha_2\beta_1 \right) \left( \alpha_1\alpha_2 - \beta_1\beta_2 \right) = 0
    Last edited by Sylvia104; May 18th 2012 at 07:09 AM.
    Follow Math Help Forum on Facebook and Google+

Similar Math Help Forum Discussions

  1. Algeb
    Posted in the Algebra Forum
    Replies: 4
    Last Post: May 17th 2012, 06:24 AM
  2. Algeb
    Posted in the Algebra Forum
    Replies: 1
    Last Post: May 16th 2012, 07:12 AM
  3. Algeb
    Posted in the Algebra Forum
    Replies: 5
    Last Post: May 15th 2012, 08:01 AM

Search Tags


/mathhelpforum @mathhelpforum